The authors suggest in the exercise that we try to imitate the proof of Theorem 1.1.3. Let us follow this kind suggestion.
Let $(e_k)_{k=1}^{\infty }$ be a weak basis. For $n \in \mathbb{N}$, define the linear maps
$e_n^{\#}\colon X\to \mathbb{K}$ by $e_n^{\#}(x)=a_n$ whenever
$x=\sum_{k=1}^{\infty}a_k e_k$ in the weak topology. Note that $e_n^{\#}(e_m)=\delta _{nm}$,
where $\delta _{nm}$ denotes the usual Kronecker delta, so if we show
that:
- $e_n^{\#}$ are bounded
- $x=\sum_{n=1}^\infty e_n^\#(x) e_n $ in the usual norm.
Then, it will follow that
$(e_k)_{k=1}^{\infty }$ is a Schauder basis.
Let us prove 1:
For this purpose, it clearly suffices to show that the natural projections
$$
S_n\bigg( \sum_{k=1}^{\infty}a_ke_k \bigg) =\sum_{k=1}^{n}a_ke_k
$$
are bounded for all $n\ge 1$. By hypothesis $S_nx\xrightarrow{w}x$ for
all $x \in X$, so the sequence $(S_nx)_{n=1}^{\infty }$ is norm
bounded, and it makes sense to define $|||x|||=\sup_{n\ge 1}
\|S_nx\|$. It is direct to check that $|||{\cdot }|||$ is a norm.
Also, since $x^{*}(S_nx)\to x^{*}(x)$ for all $x^{*} \in X^{*}$, we
have
$$
|x^{*}(x)|\leq \sup_{n\ge 1}|x^{*}(S_nx)|
$$
which implies
$$
\|x\|=\sup_{\|x^{*}\|\le 1}|x^{*}(x)|\le \sup_{\|x^{*}\|\le
1}\sup_{n\ge 1} |x^{*}(S_nx)|=|||x|||.
$$
We have thus shown that $\|{\cdot }\|\le |||{\cdot }|||$.
Our next goal is to prove that the space $(X,|||{\cdot }|||)$ is
complete. To do this, let $(x_n)_{n=1}^{\infty }$ be a Cauchy sequence
in $|||{\cdot }|||$. By the inequality shown above, $(x_n)$ is Cauchy
in $\|{\cdot }\|$, and so it converges to some $x \in X$. We will show
that $(x_n)$ also converges to $x$ in $|||{\cdot }|||$. Fixed any $k \in \mathbb{N}$, $\|S_kx_n-S_kx_m\|\le |||x_n-x_m|||$, so the
sequence $(S_kx_n)$ converges to a certain $y_k \in X$ in the original
norm $\|{\cdot}\|$. Also, by its very definition, $S_kx_n \in
\text{span}\{e_1,\ldots ,e_k\}$, and since finite-dimensional
subspaces are closed, $y_k \in \text{span}\{e_1,\ldots ,e_k\}$.
Another important property of finite-dimensional spaces is that any
linear operator is continuous, so we must have
$$e_j^{\#}(x_n)=e_j^{\#}(S_kx_n)\to e_j^{\#}(y_k)\quad\text{for }1\le j\le k.$$
Now we claim that $y_k\xrightarrow{w} x$. To show this, fix $x^{*}\in
X^{*}$ and $\varepsilon >0$. Choose $n \in \mathbb{N}$ such that
$|||x_n-x_m|||<\varepsilon$ for every $m\ge n$ (this is possible
because $(x_n)$ is Cauchy in $|||{\cdot}|||$), and choose $k_0\in
\mathbb{N}$ such that $|x^{*}(x_n)-x^{*}(S_kx_n)|<\varepsilon$ for all
$k\ge k_0$ (this is possible because $S_kx_n\xrightarrow{w}x_n$). Then for $k\ge k_0$:
\begin{align}
|x^{*}(y_k)-x^{*}(x)|&\le \lim_{m\to \infty
}|x^{*}(S_kx_m)-x^{*}(S_kx_n)|\\&+|x^{*}(S_kx_n)-x^{*}(x_n)|+\lim_{m\to
\infty } |x^{*}(x_n)-x^{*}(x_m)|\\
&\le \|x^{*}\|\lim_{m\to \infty } |||x_m-x_n|||+ \varepsilon
+\|x^{*}\|\lim_{m\to \infty }|||x_m-x_n|||\\
&\le (2\|x^{*}\|+1)\varepsilon .
\end{align}
So $x^{*}(y_k)\to x^{*}(x)$ for all $x^{*} \in X^{*}$. In other words,
$$
y_k=\sum_{j=1}^{k} e_j^{\#}(y_k)e_j\xrightarrow{w} x,
$$
and since the expansion of $x$ in the weak basis $(e_j)$ is unique, it
follows that $y_k=S_kx$. With this we can finally show that
\begin{align}
|||x_n-x|||&=\sup_{k\ge 1} \|S_kx_n-S_kx\|\\
&=\sup_{k\ge 1} \|S_k x_n-y_k\|\\
&=\sup_{k\ge 1}\lim_{m\to \infty } \|S_kx_n-S_kx_m\|\\
&\le \limsup_{m\to \infty }
|||x_n-x_m|||\xrightarrow[n\to \infty ]{}0,
\end{align}
and therefore $(X,|||{\cdot }|||)$ is complete.
We are almost done. We have already shown that the identity map $id_X\colon
(X,\|{\cdot}\|)\to (X,|||{\cdot }|||)$ is continuous (this is
precisely the inequality we proved at the beginning), and so it is an
isomorphism by the Bounded Inverse Theorem. Hence there exists a
constant $C>0$ such that $|||x|||\le C\|x\|$, that is, such that
$\|S_k\|\le C$ for all $k\in\mathbb{N}$. And this finishes the proof.
Let us prove 2:
We first notice $X=\overline{span\{e_n\:|\: n \in \mathbb{N}\}}$. Indeed, if $x\in X\setminus \overline{span\{e_n\:|\: n \in \mathbb{N}\}} $, by geometric Hahn Banach, there would exist $f$ that separates them strictly. Therefore we arrive at the following contradiction:
$$0\not=f(x)=f(\sum_{k=1}^\infty a_k e_k)=\sum_{k=1}^\infty a_k f(e_k)=0$$
Because it is dense, we may find a sequence $x_n\rightarrow x$ such that $x_n \in span\{e_1,...,e_n\}$ (going to a subsequence if necessary and repeating terms if necessary). Clearly:
$$\lVert S_n(x)-x\rVert = \lVert S_n(x)-S_n(x_n)+x_n-x\rVert \leq (\sup_n \lVert S_n \rVert+1)\lVert x-x_n \rVert\rightarrow 0$$
Indeed, $S_n(x)$ converges weakly to $x$, so it is norm bounded and by Banach Steinhaus, $\sup_n \lVert S_n\rVert<\infty$. Thus, $x=\sum_{k=1}^{\infty}a_k e_k$ in the usual norm.