A example is:
$$A= \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \leftrightarrow -\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \leftrightarrow -\begin{bmatrix} 1 & 4 \\ 0 & -10 \end{bmatrix} = H $$
The row operations I used are $$(1) R_1 \leftrightarrow R_2$$
$$(2) -3R_1 + R_2 \to R_2$$
The original matrix
$$|A - \lambda I| = (\lambda-2)(\lambda-5) $$
The reduced matrix:
$$|H - \lambda I| = -(1-\lambda)(-10-\lambda) $$
Why are they different?
For a couple other questions this was working
EDIT: A matrix that gave the same eigen value as the one reduced:
$$A= \begin{bmatrix} 2 & 0 & 1 \\ 6 & 4 & -3 \\ 2 & 0 & 3 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 9 & 4 & -3 \\ -1 & 0 & 3 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 9 & 4 & -12 \\ -1 & 0 & 4 \end{bmatrix} = H $$
Column operations were $$-C_3 + C_1 \to C_1$$
$$-C_1 + C_3 \to C_3$$
The eigen values are the same for A and H