I need help understanding the following isomorphisms:
$$\mathbb Z[\sqrt{-5}]/(2,1+\sqrt{-5}) \cong \mathbb Z[X]/(X^2+5,2,1+X) = \mathbb Z[X]/(2,1+X) \cong \mathbb Z/2\mathbb Z$$
In general, I am also wondering whether the following are true, and if so briefly why:
- $\mathbb Z[\sqrt{D}] \cong \mathbb Z[x]/(x^2 - D)$ for all squarefree integers $D$
- $(R/I)/J \cong R/(I +J)$, ie why do we have things like $\mathbb Z[x]/(2,x^2+5)\simeq \mathbb Z_2[x]/(x^2+5) $ where $\mathbb Z[x] / (2) \cong \mathbb Z_2[x]$?
Also for example for something like the following:
$$\,\mathbb Z[x]/(2,x^2+5)\simeq \mathbb Z_2[x]/(x^2+1)$$
Is it true because of the third isomorphism theorem? I'm guessing we set $R = \mathbb Z[x]$, $I = (2)$, and $J = (x^2 + 5)$, but please expand more on each step of the reduction.