Actually, for $S_n=\displaystyle\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{i+j}{i^2+j^2}$, the limit $S=\displaystyle\lim_{n\to\infty}\left[\left(\frac{\pi}{2}+\ln 2\right)n\color{red}{-\ln n}-S_n\right]$ exists.
This limit is seen as $1+\displaystyle\lim_{n\to\infty}(I_n-S_n)$, where
$$\begin{align*}I_n&=\iint_{[\frac{1}{2},n+\frac{1}{2}]^2}\frac{x+y}{x^2+y^2}\,dx\,dy\\ &=(2n+1)\ln(2n+1)\\ &-(n+1)\ln(2n^2+2n+1)\\ &+n(2\arctan(2n+1)-\pi/2).\end{align*}$$
To prove existence, note that $I_n-S_n=\displaystyle\sum_{i=1}^{n}\sum_{j=1}^{n}\Delta_{i,j}$, where
$$\begin{gather}\Delta_{i,j}=\iint_{[-\frac{1}{2},\frac{1}{2}]^2}\big(f(i+x,j+y)-f(i,j)\big)\,dx\,dy,\quad f(x,y)=\frac{x+y}{x^2+y^2};\\ \frac{1}{n!}\left|\frac{\partial^{n}\!f}{\partial x^k\partial y^{n-k}}\right|\leqslant\left|\frac{x+y}{x^2+y^2}\right|^{n+1},\quad \frac{\partial^2\!f}{\partial x^2}+\frac{\partial^2\!f}{\partial y^2}=0,\end{gather}$$
and Taylor's theorem produces $|\Delta_{i,j}|=\mathcal{O}\left(\big(\frac{i+j}{i^2+j^2}\big)^5\right)$ which is sufficient.
Computing $S$ using (its definition and) Lagrange-Zagier extrapolation, I get
$$ \color{blue}{S=1.0042628439817233943074076864477736788445647263436\ldots} $$
I wonder whether $S$ is related to some known mathematical constants...
The higher-order asymptotics can indeed be derived from Euler-Maclaurin formula (or its two-dimensional extension, but I'm going the elementary way below). Let
$$ \begin{gather}S_n\asymp Kn-\ln n-S-\sum_{k=1}^{(\infty)}\frac{a_k}{n^k},\quad K=\frac{\pi}{2}+\ln 2;\\ S_n-S_{n-1}\asymp K+\ln\Big(1-\frac{1}{n}\Big)+\sum_{k=2}^{(\infty)}n^{-k}\sum_{r=1}^{k-1}\binom{k-1}{r-1}a_r.\end{gather} $$
Now we apply E.-M. to $f(x)=2\dfrac{1+x}{1+x^2}, x\in[0,1]$. We have $\displaystyle\int_0^1 f(x)\,dx=K$,
$$ \begin{gather}\frac{1}{n}\left(\frac{f(0)+f(1)}{2}+\sum_{k=1}^{n-1}f\Big(\frac{k}{n}\Big)\right)=\frac{1}{n}+S_n-S_{n-1},\\ \frac{f^{2k-1}(0)}{(2k)!}=\frac{(-1)^{k-1}}{k},\quad\quad\frac{f^{2k-1}(1)}{(2k)!}=-\frac{(-1)^{\lfloor k/2\rfloor}}{2^k\cdot k}\end{gather} $$
(the last two e.g. from power series); Euler-Maclaurin gives
$$ S_n-S_{n-1}\asymp K-\frac{1}{n}-\sum_{k=1}^{(\infty)}\frac{c_k}{n^{2k}},\quad c_k=\frac{B_{2k}}{k}\Big((-1)^{k-1}+2^{-k}(-1)^{\lfloor k/2\rfloor}\Big). $$
Thus,
$$ \sum_{r=1}^{k-1}\binom{k-1}{r-1}a_r=b_k=\frac{1}{k}-\begin{cases}c_{k/2}&(k\text{ even})\\ 0 &(k\text{ odd})\end{cases}\quad(k>1) $$
and, recognizing the inverse matrix for this system here, we finally get
$$ a_n=\frac{1}{n}\sum_{k=1}^{n}\binom{n}{k}B_{n-k}b_{k+1}. $$
This sequence begins with
$$ \frac{1}{4}, \frac{1}{24}, -\frac{7}{144}, \frac{3}{160}, 0, -\frac{1}{2016}, -\frac{19}{2688}, \frac{31}{3840}, 0, \frac{1}{4224}, -\frac{1453}{59136}, \frac{29713}{698880}, 0, \ldots $$
(this coincides with the values computed numerically in a prior edition of this answer).