Let $P = (p_{i,j})$ and $Q = (q_{i,j})$ be the $n \times n$ lower triangular matrices defined by
$$p_{i,j} = \begin{cases} \dbinom{i}{j-1} & \text{for}\ 1\le j\le i \le n\\ \hfill 0 \hfill & \text{elsewhere} \end{cases}$$
and
$$q_{i,j} = \begin{cases} \dbinom{i}{j} & \text{for}\ 1 \le j \le i \le n\\ \hfill 0 \hfill & \text{elsewhere} \end{cases}$$
For any square matrix $M=(m_{i,j})$, define $M^{alt} = (m_{i,j}^{alt})$ with entries $m_{i,j}^{alt} = (-1)^{i+j} m_{i,j}$.
The following appears to be true per Mathematica:
$$P(P^{-1})^{alt} = Q.$$
Any ideas how to go about proving it?
Thank you.