I need to solve the following problem on the infinite strip:
$\displaystyle \begin{align} u_{xx}(x,y) + u_{yy}(x,y) = 0, & -\infty < x < \infty, & 0<y<1 \\ u(x,0)= \begin{cases}1, &\text{if}\, |x|<2 \\ 0 & \text{if}\, |x|>2 \end{cases} \\u(x,1) = 0,\,\,\, -\infty < x < \infty\\ u(x,y)\,\text{bounded for}\,|x|\to \infty\end{align}$.
The first thing I did was try to find the transformed problem: letting $\displaystyle U(\alpha,y) = \frac{1}{2\pi}\int_{-\infty}^{\infty}u(x,y)\exp[-i \alpha x]dx$, $\mathcal{F}[u_{xx}(x,y)]=-\alpha^{2}U(\alpha,y)$, and $\mathcal{F}[u_{yy}(x,y)]=U^{\prime\prime}(\alpha,y)$,
the transformed problem is
$\begin{align}-\alpha^{2}U(\alpha,y)+U^{\prime\prime}(\alpha,y)=0 \end{align}$, whose solution is of the form
$\displaystyle \begin{align} U(\alpha,y)=A \exp[-|\alpha|y]+B\exp[|\alpha|y] .\end{align}$
Then, to apply the boundary conditions, we must first transform them.
For $f(x) = u(x,0)=\begin{cases} 1, &\text{if}\,|x|<2 \\ 0 & \text{if}\,|x|>2 \end{cases}$, $\displaystyle F(\alpha) = \int_{-2}^{2}\exp[-ix\alpha]dx = \frac{1}{\alpha \pi}\sin (2 \alpha)$.
For $g(x) = u(x,1)=0$, I'm supposing that $\displaystyle G(\alpha) = \int_{-\infty}^{-2} 0 \cdot \exp[-ix\alpha]dx + \int_{2}^{\infty} 0 \cdot \exp[-ix\alpha]dx = 0$.
Now, applying the boundary condition that $U(\alpha,0) = F(\alpha)$, we have that $\displaystyle A \exp[-|\alpha|\cdot 0] + B \exp[|\alpha|\cdot 0] = \frac{1}{\alpha \pi}\sin(2\alpha)$ implies that $\displaystyle \mathbf{A + B = \frac{1}{\alpha \pi} \sin (2 \alpha)}\,\,(1)$
Applying the boundary condition that $U(x,1)=0$, we have that $A \exp[-|\alpha|]+B\exp[|\alpha|]=0 \, \Longrightarrow exp[|\alpha|]\left(A\exp[-2|\alpha|]+B \right) = 0 \, \Longrightarrow \mathbf{A\exp[-2|\alpha|]+B = 0}\,\,(2)$
Solving equation $(2)$ for $B$: $\displaystyle B = -A\exp[-2|\alpha|]$, and substituting into $(1)$, we obtain the following expression for $A$:
$\displaystyle \begin{align} A - A\exp[-2|\alpha|] = \frac{1}{\alpha \pi}\sin(2 \alpha)\\ \Longrightarrow \, A(1-\exp[-2|\alpha|] = \frac{1}{\alpha \pi} \sin(2 \alpha) \\ \Longrightarrow \,\frac{\sin(2 \alpha)}{\alpha \pi (1-\exp[-2|\alpha|])} \\ \Longrightarrow\mathbf{A = \frac{\exp[2|\alpha|]\cdot\sin(2 \alpha)}{\alpha \pi (\exp[2|\alpha|]-1)}}\end{align}$
Sustituting this back into $(2)$, we get that $\displaystyle \mathbf{B} = -\frac{\sin(2\alpha)}{\alpha \pi (\exp[2|\alpha|]-1)}$
So, the solution to the transformed problem is $\begin{align}\displaystyle U(\alpha,y)= \frac{\exp[2|\alpha|]\cdot \sin(2 \alpha)}{\alpha \pi(\exp[2|\alpha|]-1)}\exp[-|\alpha|y] - \frac{\sin(2\alpha)}{\alpha \pi (\exp[2|\alpha|]-1)}\exp[|\alpha|y]\\ = \frac{\exp[|\alpha|(2-y)]}{\exp[2|\alpha|]-1}F(\alpha) - \frac{\exp[|\alpha|y]}{(\exp[2|\alpha|-1)}F(\alpha)\end{align}$
Now, I need to apply the inverse transform in order to get back from $U(\alpha,y)$ to $u(x,y)$. So, I thought I would do it for each summand in $U(\alpha,y)$ individually.
So, for $\displaystyle\frac{\exp[|\alpha|(2-y)]}{\exp[2|\alpha|]-1}F(\alpha) $, let $\displaystyle H_{1}(\alpha) = \frac{\exp[|\alpha|(2-y)]}{\exp[2|\alpha|]-1}$. Then if $u_{1}(x,y)-u_{2}(x,y) = u(x,y)$, $\displaystyle \mathbf{u_{1}(x,y)} = f * h_{1} = \frac{1}{2\pi} f * \mathcal{F}^{-1}\left[\frac{\exp[|\alpha|(2-y)]}{\exp[2|\alpha|]-1} \right]$.
Then, this $\displaystyle = \frac{1}{2\pi}\int_{-\infty}^{\infty}f(z) \cdot\mathcal{F}^{-1}\left[\frac{\exp[|\alpha|(2-y)]}{\exp[2|\alpha|]-1} \right]dz = \frac{1}{2 \pi}\int_{-2}^{2}1\cdot\mathcal{F}^{-1}\left[\frac{\exp[|\alpha|(2-y)]}{\exp[2|\alpha|]-1} \right]dz \\ \displaystyle \mathbf{= \frac{1}{2 \pi}\int_{-2}^{2}\mathcal{F}^{-1}\left[\frac{\exp[|\alpha|(2-y)]}{\exp[2|\alpha|]-1} \right]dz} $.
Also, for $\displaystyle \frac{\exp[|\alpha|y]}{(\exp[2|\alpha|-1)}F(\alpha)$, let $\displaystyle H_{2}(\alpha) = \frac{\exp[|\alpha|y]}{(\exp[2|\alpha|-1)}$. Then $\displaystyle \mathbf{u_{2}(x,y)} =f * h_{2} = \frac{1}{2\pi} f * \mathcal{F}^{-1} \left[\frac{\exp[|\alpha|y]}{(\exp[2|\alpha|-1)}\right] = \frac{1}{2\pi}\int_{-\infty}^{\infty}f(z)\cdot\mathcal{F}^{-1} \left[\frac{\exp[|\alpha|y]}{(\exp[2|\alpha|-1)}\right] dz\\ \displaystyle = \frac{1}{2\pi}\int_{-2}^{2}1 \cdot \mathcal{F}^{-1} \left[\frac{\exp[|\alpha|y]}{(\exp[2|\alpha|-1)}\right] dz \\ \displaystyle \mathbf{ = \frac{1}{2\pi}\int_{-2}^{2} \mathcal{F}^{-1} \left[\frac{\exp[|\alpha|y]}{(\exp[2|\alpha|-1)}\right] dz} $.
But, I can go no further until I can figure out what $\displaystyle \mathcal{F}^{-1}\left[\frac{\exp[|\alpha|(2-y)]}{\exp[2|\alpha|]-1} \right]$ and $\displaystyle \mathcal{F}^{-1} \left[\frac{\exp[|\alpha|y]}{(\exp[2|\alpha|-1)}\right]$ are, and I have no idea how to do that.
The answer given in the back of my book is weird: $\displaystyle u(x,y) = \frac{1}{\pi}\sum_{n=0}^{\infty} \left[\arctan \left(\frac{x+2}{2n+y} \right)- \arctan \left( \frac{x-2}{2n+y}\right) \\- \arctan \left(\frac{x+2}{2n+2-y} \right) + \arctan \left(\frac{x-2}{2n+2-y} \right) \right]$.
So, first of all, how do I find the inverse Fourier transforms of those things I bolded a couple of paragraphs ago, and how are these series going to come into play in my solution? Please be as detailed and explicit as possible in your answer. Thank you.