I am working on the following problem where I keep on getting one sign different than the answer in the back of the book:
Find the steady-state distribution of temperature in the half space $H = \{ y > 0 \}$ if the boundary temperature is $\displaystyle u(x,0) = \begin{cases} 1 & \text{if}\, -1<x<0 \\ 1-x & \text{if}\,0<x<1 \\ 0 & \text{otherwise}\end{cases}$.
I.e., I need to solve the Laplace equation $u_{xx}(x,y) + u_{yy}(x,y) = 0$ with the boundary condition $\displaystyle u(x,0) = \begin{cases} 1 & \text{if}\, -1<x<0 \\ 1-x & \text{if}\,0<x<1 \\ 0 & \text{otherwise}\end{cases}$.
First, I let $\displaystyle U(\alpha,y) = \frac{1}{2 \pi} \int_{-\infty}^{\infty}u(x,y)e^{-i\alpha x}dx$, and then converted the equation to
$\begin{align} -\alpha^{2} U(\alpha,y) + U^{\prime\prime}(\alpha,y) = 0 \end{align}$
which has a general solution of the form $U(\alpha,y) = A e^{-|\alpha|y}+B e^{|\alpha|y}. $
In order to make sure that our solution is bounded as we go off to $\infty$, we let $B = 0$, and so the general solution is of the form $U(\alpha,y)=A e^{-|\alpha|y}.$
Now, $\displaystyle F(\alpha) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \exp[i \alpha x] dx$
Let $G(\alpha) = \exp(-|\alpha|y)$, then $\displaystyle u(x,y) = f * g = \frac{1}{2\pi}f * \mathcal{F}^{-1}\left[\exp(-|\alpha|y)\right]$ where $'*'$ denotes the convolution product.
Earlier, I found $\displaystyle\mathcal{F}^{-1}\left[\exp(-|\alpha|y)\right] = \frac{2y}{(x-z)^{2}+y^{2}}$, so $\displaystyle \begin{align}u(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty}f(z) \frac{2y}{(x-z)^{2}+y^{2}}dz \\ = \frac{1}{\pi} \int_{-1}^{0}\frac{y}{(x-z)^{2}+y^{2}}dz + \frac{1}{\pi}\int_{0}^{1}(1-z)\frac{y}{(x-z)^{2}+y^{2}}dz \\ = \frac{1}{\pi} \int_{-1}^{0}\frac{y}{(x-z)^{2}+y^{2}}dz + \frac{1}{\pi}\int_{0}^{1}\frac{y}{(x-z)^{2}+y^{2}}dz -\frac{1}{\pi}\int_{0}^{1}\frac{yz}{(x-z)^{2} + y^{2}}dz\end{align}$.
Next, I took care of the first two integrals by using the trig substitution $\displaystyle \tan \theta = \frac{x-z}{y}$, $\displaystyle z=x-y\tan \theta$, $dz = -y \sec^{2}\theta d\theta$, and so the above became:
$\displaystyle \begin{align} = -\frac{1}{\pi}\int_{z=-1}^{z=0}\frac{y^{2}\sec^{2}\theta d\theta}{y^{2}\sec^{2}\theta} - \frac{1}{\pi}\int_{z=0}^{z=1}\frac{y^{2}\sec^{2}\theta d\theta}{y^{2} \sec^{2}\theta} -\frac{1}{\pi}\int_{0}^{1}\frac{yz}{(x-z)^{2} + y^{2}}dz \\ = \displaystyle -\frac{1}{\pi}\left[ \theta \right]_{\arctan\left(\frac{x+1}{y} \right)}^{ \arctan\left(\frac{x}{y} \right)}-\frac{1}{\pi}\left[ \theta \right]_{\arctan\left(\frac{x}{y} \right)}^{ \arctan\left(\frac{x-1}{y} \right)} -\frac{1}{\pi}\int_{0}^{1}\frac{yz}{(x-z)^{2} + y^{2}}dz \\ = -\frac{1}{\pi} \left[\arctan\left( \frac{x}{y}\right)- \arctan \left(\frac{x+1}{y} \right) \right] - \frac{1}{\pi}\left[\arctan \left(\frac{x-1}{y} \right) - \arctan \left(\frac{x}{y} \right) \right]\\ -\frac{1}{\pi}\int_{0}^{1}\frac{yz}{(x-z)^{2} + y^{2}}dz\end{align}$.
Then, I used the fact that the $\arctan$ function is odd, and so $\arctan\left(\frac{x-1}{y}\right) = \arctan\left(\frac{-1+x}{y} \right) = \arctan \left( \frac{-(1-x)}{y}\right) = -\arctan \left(\frac{1-x}{y} \right)$. Therefore, the above becomes:
$\displaystyle \begin{align} -\frac{1}{\pi} \left[\arctan\left( \frac{x}{y}\right)- \arctan \left(\frac{x+1}{y} \right) \right] - \frac{1}{\pi}\left[-\arctan \left(\frac{1-x}{y} \right) - \arctan \left(\frac{x}{y} \right) \right] \\ -\frac{1}{\pi}\int_{0}^{1}\frac{yz}{(x-z)^{2} + y^{2}}dz \\ = -\frac{1}{\pi} \left[\arctan\left( \frac{x}{y}\right)- \arctan \left(\frac{x+1}{y} \right) \right] - \frac{1}{\pi}\left[-\left(\arctan \left(\frac{1-x}{y} \right) + \arctan \left(\frac{x}{y} \right)\right) \right] \\ -\frac{1}{\pi}\int_{0}^{1}\frac{yz}{(x-z)^{2} + y^{2}}dz \\ = \frac{1}{\pi} \left[\arctan \left(\frac{x+1}{y} \right) - \arctan\left( \frac{x}{y}\right) \right] + \frac{1}{\pi}\left[\arctan \left(\frac{1-x}{y} \right) +\arctan \left(\frac{x}{y} \right) \right]\\ -\frac{1}{\pi}\int_{0}^{1}\frac{yz}{(x-z)^{2} + y^{2}}dz\end{align}$
For the last integral, I let $u = x-z$, $z=x-u$, $dz=-du$. Then, $\displaystyle \begin{align}-\frac{1}{\pi}\int_{z=0}^{z=1}\frac{yz}{(x-z)^{2} + y^{2}}dz = -\frac{y}{\pi}\int_{z=0}^{z=1}\frac{x-u}{u^{2} + y^{2}} (-du) \\ = -\frac{y}{\pi}\int_{z=0}^{z=1}\frac{-x+u}{u^{2}+y^{2}}du \\ = -\frac{y}{\pi}\int_{z=0}^{z=1}\frac{-x}{u^{2}+y^{2}}du - \frac{y}{\pi}\int_{z=0}^{z=1}\frac{u}{u^{2}+y^{2}}du \\ = \frac{y}{\pi}\int_{z=0}^{z=1}\frac{x}{u^{2}+y^{2}}du - \frac{y}{\pi}\int_{z=0}^{z=1}\frac{u}{u^{2}+y^{2}}du \end{align}$
As before, on the first integral, I use the trig substitution $\tan \varphi = \frac{u}{y}$, $u = y \tan \varphi$, $du = y \sec^{2}\varphi d \varphi$, and $\displaystyle \frac{y}{\pi}\int_{z=0}^{z=1}\frac{x}{u^{2}+y^{2}} =\frac{x}{\pi}\arctan\left(\frac{u}{y} \right)_{z=0}^{z=1} = \frac{x}{\pi} \arctan\left( \frac{x-z}{y}\right)_{0}^{1} = \frac{x}{\pi}\arctan \left(\frac{x-1}{y}\right) - \frac{x}{\pi}\arctan \left(\frac{x}{y} \right)= -\frac{x}{\pi}\arctan \left(\frac{1-x}{y}\right) - \frac{x}{\pi}\arctan \left(\frac{x}{y} \right)$
On the second integral, I let $w=u^{2}+y^{2}$, $\displaystyle \frac{dw}{2} = u du$, and so obtain $\displaystyle -\frac{y}{\pi}\int_{0}^{1}\frac{u}{u^{2}+y^{2}}du = -\frac{y}{2\pi}\int_{z=0}^{z=1}\frac{dw}{w} = -\frac{y}{2\pi}\left[\ln |w| \right]_{z=0}^{z=1} = -\frac{y}{2\pi} \left[\ln(u^{2}+y^{2})\right]_{z=0}^{z=1} = -\frac{y}{2\pi}\left[\ln((x-z)^{2}+y^{2})\right]_{z=0}^{z=1} = -\frac{y}{2\pi}\left[\ln((x-1)^{2}+y^{2})\right] + \frac{y}{2\pi}\left[\ln(x^2+y^2)\right] \\= \frac{y}{2\pi}\ln \left[\frac{x^2+y^2}{(x-1)^2+y^2} \right] $.
Putting these back together, we have that $\displaystyle \begin{align}u(x,y) = \frac{1}{\pi} \left[\arctan \left(\frac{x+1}{y} \right) - \arctan\left( \frac{x}{y}\right) \right] + \frac{1}{\pi}\left[\arctan \left(\frac{1-x}{y} \right) +\arctan \left(\frac{x}{y} \right) \right] -\frac{x}{\pi}\arctan \left(\frac{1-x}{y}\right) - \frac{x}{\pi}\arctan \left(\frac{x}{y} \right)+ \frac{y}{2\pi}\ln \left[\frac{x^2+y^2}{(x-1)^2+y^2} \right] \\ = \frac{1}{\pi} \left[\arctan \left(\frac{x+1}{y} \right) - \arctan\left( \frac{x}{y}\right) \right] \mathbf{+} \frac{1-x}{\pi}\left[\arctan\left(\frac{x}{y}\right) + \arctan \left( \frac{1-x}{y}\right)\right]+\frac{y}{2\pi}\ln \left[\frac{x^2+y^2}{(x-1)^2+y^2} \right] \end{align}$
According to the back of my book, the final answer I am supposed to get is $\displaystyle \frac{1}{\pi}\left[\arctan \left(\frac{x+1}{y} \right)- \arctan \left(\frac{x}{y} \right)\right] \mathbf{-} \frac{1-x}{\pi}\left[\arctan \left(\frac{x}{y}\right) + \arctan \left(\frac{1-x}{y} \right) \right] + \frac{y}{2 \pi}\ln \left[\frac{x^{2}+y^{2}}{(x-1)^{2}+y^{2}} \right]$
The book gets $- \frac{1-x}{\pi}$ and I get $ +\frac{1-x}{\pi}$. Which one of us is right: me or the book? And if it's the book, where did I go wrong with that sign?
Thank you.