We are given two independent standard normal random variables $X$ and $Y$. We need to find out the M.G.F of $XY$.
I tried as follows : \begin{align} M_{XY}(t)&=E\left(e^{(XY)t}\right)\\&=\int_{- \infty}^{\infty}\int_{- \infty}^{\infty}e^{(XY)t}f_X(x)f_y(y)dxdy \\ &=\dfrac{1}{2\pi}\int_{- \infty}^{\infty}\int_{- \infty}^{\infty}e^{(xy)t}e^{\frac{-x^2}{2}}e^{\frac{-y^2}{2}}dxdy \\ &= \dfrac{1}{2\pi}\int_{- \infty}^{\infty}\int_{- \infty}^{\infty}e^{-\dfrac{(x-ty)^2}{2}}e^{\dfrac{-t^2y^2}{2}}e^{\frac{-y^2}{2}}dxdy \\ &= \dfrac{1}{\sqrt{2\pi}}\int_{- \infty}^{\infty}e^{\dfrac{-t^2y^2}{2}}e^{\frac{-y^2}{2}}dy \\ &= \dfrac{1}{\sqrt{2\pi}}\int_{- \infty}^{\infty}e^{-y^{2}(\frac{1}{2}+t^2)}dy \\ &= \dfrac{1}{\sqrt{1+2t^2}} \end{align} Is this correct ?