The Problem:
$x_n$ is defined as $$\sum_{k=0}^\infty \frac{(n+k)!}{k!(2n+2k)!}(\frac{1}{2})^{2k} $$ and satisfies the recurrence: $x_n-2(2n+1)x_{n+1}=x_{n+2}$
But I cannot show that this is the case...
My Attempt:
$$LHS=\sum_{k=0}^\infty\frac{(n+k)!}{k!(2n+2k)!}(\frac{1}{2})^{2k}-2(2n+1)\frac{(n+1+k)!}{k!(2n+2+2k)!}(\frac{1}{2})^{2k}$$
$$=\sum_{k=0}^\infty\frac{(n+k)!(2n+1+2k)(2n+2+2k)}{k!(2n+2+2k)!}(\frac{1}{2})^{2k}-2(2n+1)\frac{(n+1+k)!}{k!(2n+2+2k)!}(\frac{1}{2})^{2k}$$
$$=\sum_{k=0}^\infty\frac{2(n+k)!(n+1+k)(2n+1+2k)-2(2n+1)(n+1+k)!}{k!(2n+2+2k)!}(\frac{1}{2})^{2k}$$
$$=\sum_{k=0}^\infty\frac{2(n+1+k)!( (2n+1+2k)-(2n+1))}{k!(2n+2+2k)!}(\frac{1}{2})^{2k}$$
$$=\sum_{k=0}^\infty\frac{2(n+1+k)!( 2k)}{k!(2n+2+2k)!}(\frac{1}{2})^{2k}$$
$$=\sum_{k=0}^\infty\frac{2(n+2+k)!( 2k)}{k!(2n+2+2k)!(n+2+k)}(\frac{1}{2})^{2k}$$
$$=\sum_{k=0}^\infty\frac{(n+2+k)!}{(k-1)!(2n+2+2k)!(2n+4+2k)}(\frac{1}{2})^{2(k-1)-1}$$
But from this point, I have no idea how to obtain $x_{n+2}$ from this...