Jack's answer is perfect but just in case you're as dumb as I am, here are the steps connecting the recurrence to the actual continued fraction:
$$ I_n(\alpha) = \frac{\alpha}{2n} \left( I_{n-1}(\alpha) - I_{n+1}(\alpha) \right) $$
$$ \frac{I_n(\alpha)}{I_{n-1}(\alpha)} = \frac{\alpha}{2n} \left( 1 - \frac{I_{n+1}(\alpha)}{I_{n-1}(\alpha)} \right) $$
$$ \frac{I_n(\alpha)}{I_{n-1}(\alpha)} = \frac{\alpha}{2n} \left( 1 - \frac{I_{n}(\alpha)}{I_{n}(\alpha)} \frac{I_{n+1}(\alpha)}{I_{n-1}(\alpha)} \right) $$
$$ \frac{I_n(\alpha)}{I_{n-1}(\alpha)} = \frac{\alpha}{2n} \left( 1 - \frac{I_{n}(\alpha)}{I_{n-1}(\alpha)} \frac{I_{n+1}(\alpha)}{I_{n}(\alpha)} \right) $$
Now we solve for $\frac{I_{n}}{I_{n-1}}$
$$ \left(1 + \frac{\alpha}{2n} \frac{I_{n+1}(\alpha)}{I_n(\alpha)} \right) \frac{I_n(\alpha)}{I_{n-1}(\alpha)} = \frac{\alpha}{2n} $$
$$ \frac{I_n(\alpha)}{I_{n-1}(\alpha)} = \frac{\frac{\alpha}{2n}}{\left(1 + \frac{\alpha}{2n} \frac{I_{n+1}(\alpha)}{I_n(\alpha)} \right)} $$
$$ \frac{I_n(\alpha)}{I_{n-1}(\alpha)} = \frac{\frac{2n}{\alpha}}{\frac{2n}{\alpha}} \frac{\frac{\alpha}{2n}}{\left(1 + \frac{\alpha}{2n} \frac{I_{n+1}(\alpha)}{I_n(\alpha)} \right)} = \frac{1}{\frac{2n }{\alpha} + \frac{I_{n+1}(\alpha)}{I_n(\alpha)}} $$
Now you can repeatedly substitute to yield the infinite continued fraction.