$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\sum_{k = 0}^{n}\pars{-1}^{k}{n! \over k!\pars{n - k}!}
\,\pars{n - k}^{n + 1}\ =\
{\pars{n + 1}n \over 2}\,n!:\ ?}$
\begin{align}
&\color{#f00}{\sum_{k = 0}^{n}\pars{-1}^{k}\,{n! \over k!\pars{n - k}!}
\,\pars{n - k}^{n + 1}}\ =\
\sum_{k = 0}^{n}\pars{-1}^{k}\,{n \choose k}\
\overbrace{\pars{n + 1}!
\oint_{\verts{z}\ =\ 1}{\expo{\pars{n - k}z} \over z^{n + 2}}
\,{\dd z \over 2\pi\ic}}^{\ds{\pars{n - k}^{n + 1}}}
\\[5mm] = &
\pars{n + 1}!\oint_{\verts{z}\ =\ 1}\,\,
{\expo{nz} \over z^{n + 2}}\,\,
\sum_{k = 0}^{n}{n \choose k}\pars{-\expo{-z}}^{\, k}\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\pars{n + 1}!\oint_{\verts{z}\ =\ 1},\,\,
{\expo{nz} \over z^{n + 2}}\,\pars{1 - \expo{-z}}^{n}\,{\dd z \over 2\pi\ic} =
\pars{n + 1}!\oint_{\verts{z}\ =\ 1}\,\,
{\pars{\expo{z} - 1}^{n} \over z^{n + 2}}\,{\dd z \over 2\pi\ic}\tag{1}
\end{align}
$\ds{\pars{\expo{z} - 1}^{n}}$ is related, as a
generating function, to the
Stirling Numbers of the Second Kind.
Namely,
\begin{equation}
\pars{\expo{z} - 1}^{n} =
n!\sum_{j = 0}^{\infty}\braces{j \atop n}\,{z^{\, j} \over j!}
\tag{1.1}
\end{equation}
$\ds{\braces{j \atop n}}$ is a
Stirling Number of the Second Kind.
With this expression, $\ds{\pars{1}}$ is reduced to:
\begin{align}
&\color{#f00}{\sum_{k = 0}^{n}\pars{-1}^{k}\,{n! \over k!\pars{n - k}!}
\,\pars{n - k}^{n + 1}}\ =\
\pars{n + 1}!\, n!\sum_{j = 0}^{\infty}{\braces{j \atop n} \over j!}\
\overbrace{\oint_{\verts{z}\ =\ 1}\,\,
{1 \over z^{n + 2 - j}}\,\,{\dd z \over 2\pi\ic}}
^{\ds{\delta_{n + 2 - j,1}}}
\\[5mm] = &\
\pars{n + 1}!\, n!\sum_{j = 0}^{\infty}{\braces{j \atop n} \over j!}\,
\delta_{j,n + 1} =
\pars{n + 1}!\, n!\,{\braces{n + 1 \atop n} \over \pars{n + 1}!} =
n!\braces{n + 1 \atop n}\tag{2}
\end{align}
However, $\ds{\braces{n + 1 \atop n}}$ satisfies the '
simple identity'
$\ds{\braces{n + 1 \atop n} = {n + 1 \choose 2} = {\pars{n + 1}n \over 2}}$ such that the expression $\ds{\pars{2}}$ becomes:
$$
\color{#f00}{\sum_{k = 0}^{n}\pars{-1}^{k}\,{n! \over k!\pars{n - k}!}
\,\pars{n - k}^{n + 1}} =
\color{#f00}{{\pars{n + 1}n \over 2}\,n!}
$$
ADDENDA:
Following @MarkoRiedel comment ( see below ), we can 'jump directly' from expression $\ds{\pars{1}}$:
\begin{align}
&\color{#f00}{\sum_{k = 0}^{n}\pars{-1}^{k}\,{n! \over k!\pars{n - k}!}
\,\pars{n - k}^{n + 1}} =
\pars{n + 1}!\bracks{z^{n + 1}}\bracks{\pars{\expo{z} - 1}^{n}}
\\[5mm] = &
\pars{n + 1}!\bracks{n!\,{\braces{n + 1 \atop n} \over \pars{n + 1}!}} =
n!\braces{n + 1 \atop n} =
\color{#f00}{{\pars{n + 1}n \over 2}\,n!}
\end{align}
where we used the generating function $\ds{\pars{1.1}}$.