Why is $(2, 1+\sqrt{-5})$ not principal?
\begin{align*}\mathbf Z[\sqrt{-5}]/(2, 1+\sqrt{-5})&\simeq \mathbf Z[x]/(2,x+1,x^2+5)\simeq \mathbf Z_2[x]/(x+1,x^2+1)\\ &=\mathbf Z_2[x]/\bigl(x+1,(x+1)^2\bigr)=\mathbf Z_2[x]/(x+1)\simeq\mathbf Z_2. \end{align*}
It is said to be used that $(R/I)/(J/I)\simeq R/J$, but can you explain in more detail?
And I still don't understand about the other homomorphisms and equations (especially $\mathbf Z_2[x]/(x+1,x^2+1)=\mathbf Z_2[x]/\bigl(x+1,(x+1)^2)$