Here is a simplified example for $n=2$ which might help you to start out.
Assume an archer is shooting an arrow onto an infinite target with center $(0,0)$. The arrow hits at the coordinates $(X,Y)$ where $X$ and $Y$ are independent and $X,Y\sim\mathcal{N}(0,1)$. It should be clear that
$$
f_{X,Y}(x,y)=\frac{\exp(-1/2\cdot(x^2+y^2))}{2\pi}
$$
since $X$ and $Y$ are independent. Let $Z$ be a random variable describing the distance from the center - since $Z<0$ does not make sense we have $F_Z(z)=0$ for $z<0$. Therefore we can assume $z\geq 0$ now. Now with some steps we can get
\begin{align*}
F_Z(z)
&= \Pr[Z\leq z]
= \Pr[(X,Y)\in B_z(0)]
= \int_{B_z(0)}f_{X,Y}(s,t)\,\mathrm{d}s\,\mathrm{d}t\\
&= \int_0^z\int_0^{2\pi}r\cdot f_{X,Y}(r\cos\Theta,r\sin\Theta)\,\mathrm{d}\Theta\,\mathrm{d}r\\
&= \int_0^z\int_0^{2\pi}r\cdot \frac{\exp(-1/2\cdot(r^2\cos^2\Theta+r^2\sin^2\Theta))}{2\pi}\,\mathrm{d}\Theta\,\mathrm{d}r\\
&= \int_0^z\int_0^{2\pi}r\cdot \frac{\exp(-1/2\cdot r^2)}{2\pi}\,\mathrm{d}\Theta\,\mathrm{d}r\\
&= \int_0^zr\cdot \frac{\exp(-1/2\cdot r^2)}{2\pi}\int_0^{2\pi}\,\mathrm{d}\Theta\,\mathrm{d}r\\
&= \int_0^zr\cdot \frac{\exp(-1/2\cdot r^2)}{2\pi}\cdot 2\pi\,\mathrm{d}r\\
&= \int_0^z r\cdot\exp(-1/2\cdot r^2)\,\mathrm{d}r
\end{align*}
which yields
\begin{align*}
f_Z(z) = F_Z'(z)=\begin{cases}
r\cdot\exp(-1/2\cdot r^2),&z\geq 0,\\
0,&\text{otherwise}.
\end{cases}
\end{align*}
Now it follows that
\begin{align*}
\mathbb{E}[Z]
&= \int_{-\infty}^\infty t\cdot \left (t\cdot\exp(-1/2\cdot t^2)\right )\,\mathrm{d}t\\
&= \left[-\exp(-1/2\cdot t^2)\cdot t\right |_0^\infty-\int_0^\infty -\exp(-1/2\cdot t^2)\,\mathrm{d}t \\
&= 0 + \sqrt{2\pi}\int_0^\infty\frac{\exp(-1/2\cdot t^2)}{\sqrt{2\pi}}\,\mathrm{d}t\\
&= \sqrt{2\pi}\cdot \frac{1}{2} = \sqrt{\frac{\pi}{2}}.
\end{align*}
Hence the archer will miss the center by about $\sqrt{\pi/2}$ units.
$$ \mathbb E\left[|X-Y|\right]=\frac{\int_0^\infty\mathrm drr^{n-1}\mathrm e^{-r^2/2}\int_{-\infty}^\infty\mathrm dy_\parallel\mathrm e^{-y_\parallel^2/2}\int_0^\infty\mathrm dy_\perp y_\perp^{n-2}\mathrm e^{-y_\perp^2/2}\sqrt{(r-y_\parallel)^2+y_\perp^2}} {\int_0^\infty\mathrm drr^{n-1}\mathrm e^{-r^2/2}\int_{-\infty}^\infty\mathrm dy_\parallel\mathrm e^{-y_\parallel^2/2}\int_0^\infty\mathrm dy_\perp y_\perp^{n-2}\mathrm e^{-y_\perp^2/2}};. $$
That's not a nice integral.
– joriki Jul 04 '16 at 13:50