Note that $Y$ is also the number of integral solutions $\left(z_1,z_2,\ldots,z_n\right)$ satisfying the condition $0\leq z_1\leq z_2\leq \ldots\leq z_n$ to the equation $$z_1+z_2+\ldots+z_n=\frac{n(n-1)}{2}$$ (i.e., by setting $z_k:=y_k-k$ for every $k=1,2,\ldots,n$). Hence, $n!\cdot Y$ is at least the number of integral solutions $\left(w_1,w_2,\ldots,w_n\right)$ with $w_1,w_2,\ldots,w_n\geq 0$ to $$w_1+w_2+\ldots+w_n=\frac{n(n-1)}{2}\,.$$ Consequently,
$$n!\cdot Y\geq \binom{\frac{n(n-1)}{2}+(n-1)}{n-1}=\binom{\frac{n(n+1)}{2}-1}{n-1}=\frac{1}{2^{n-1}(n-1)!}\,\prod_{i=1}^{n-1}\,\big(n(n+1)-2i\big)\,.$$
For each $i=1,2,\ldots,n-1$, it is trivial that $n(n+1)-2i> n^2-i$. That is,
$$n!\cdot Y> \frac{\prod_{i=1}^{n-1}\,\left(n^2-i\right)}{2^{n-1}(n-1)!}=\frac{1}{2^{n-1}}\,\binom{n^2-1}{n-1}=\frac{X}{2^{n-1}}\,.$$