I'm looking for a proof of $\mathcal{S}(\mathbb{R}) \subset L^p(\mathbb{R})$ for $1 \leq p \leq \infty$.
My informal probe follow like this: For any function $f \in L^p(\mathbb{R})$ exists a piecewise function $h_n$ such that $||h_n(x) - f(x)||_{L^p} \rightarrow 0 \ \text{with} \ n\rightarrow \infty \ (\forall x)$, and any $h_n$ could be approximated by compactly supported smooth functions ($C_{c}^{\infty}(\mathbb{R})$). And Since $C_{c}^{\infty}(\mathbb{R})$ is dense in $\mathcal{S}(\mathbb{R})$, then can be concluded that $\mathcal{S}(\mathbb{R}) \subset L^p(\mathbb{R})$.
Any help to formalize that, or any different proof will be helpful.