9

I want to compute the integral:

$\displaystyle \int^{\infty} _{-\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-x)^2}{2}} \frac{1}{\sqrt{2\pi}ab} e^{-\frac{x^2}{2(ab)^2}} dx$

Maybe we can use that for a normal distribution with mean $\mu$ and variance $\sigma^2$ we have

$\displaystyle \int^{\infty} _{-\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2 \sigma^2}} dx = 1$

In an effort to write the integral in this form, I tried to take the exponents together. This gives:

$\displaystyle -\frac{(y-x)^2}{2} - \frac{x^2}{2(ab)^2} = \frac{-[(ab)^2 (y-x)^2 + x^2]}{2(ab)^2} = \frac{-[(ab)^2 (y^2 -2xy +x^2) + x^2]}{2(ab)^2}$

But this leads to nowhere. Any suggestions?

clubkli
  • 779

3 Answers3

11

Here are general formulas for multivariate Gaussian distribution in $\mathbb{R}^D$ (derivation): $$\rho_{\mu, \Sigma}(x):= \frac{1}{\sqrt{|2\pi\Sigma|}} e^{-\frac 12 (x-\mu)^T\Sigma^{-1} (x-\mu)}$$

Integral of product of Gaussian distributions with covariance matrix $\Sigma$ and $\Gamma$, shifted by $\mu$ vector:

$$\int_{\mathbb{R}^D} \rho_{\mu, \Sigma}(x)\cdot\rho_{\mathbf{0},\Gamma}(x)\,dx=\frac{\exp\left(-\frac 12 (\mu^T\Sigma^{-1}(\Sigma^{-1}+\Gamma^{-1})^{-1} \Gamma^{-1}\mu) \right)} {\sqrt{(2\pi)^D |\Sigma||\Gamma||\Sigma^{-1}+\Gamma^{-1}|}}$$ For spherically symmetric $\Sigma=\sigma^2 \mathbf{I}$, $\Gamma=\gamma^2 \mathbf{I}$ shifted by any length $l$ vector it becomes: $$\frac{\exp \left(-\frac 12 \frac {l^2}{\sigma^2+\gamma^2} \right)} {\sqrt{2\pi \left(\sigma^{2}+\gamma^{2}\right)}^D}$$

  • Can your result be extended to the case where the two Gaussians in the integral are of two different dimensions? Integration, in that case, is taken over the space corresponding to the second Gaussian. – nOp Jun 12 '20 at 22:31
  • @nOp, just project the higher dimensional Gaussian to the subspace (center and covariance matrix) and use the above. – Jarek Duda Jun 13 '20 at 05:06
  • What about if I want to integrate over $\mu$, instead of $x$? – Ludwig Aug 14 '21 at 19:40
  • Dear @JarekDuda, what would be the corresponding integral of two multivatiate spherically symmetric distributions, but when both have non zero mean? Thanks. –  Jan 16 '22 at 14:20
5

Actually, you're on the right track. Just keep on going with $$\begin{align}(ab)^2(y^2-2xy+x^2)+x^2 & =(a^2b^2+1)x^2-2a^2b^2yx+a^2b^2y^2 \\ & =(a^2b^2+1)\left[x^2-2\frac{a^2b^2y}{a^2b^2+1}x\right]+a^2b^2y^2 \\ & =(a^2b^2+1)\left[\left(x-\frac{a^2b^2y}{a^2b^2+1}\right)^2-\frac{a^4b^4y^2}{(a^2b^2+1)^2}\right]+a^2b^2y^2 \\ & =(a^2b^2+1)\left(x-\frac{a^2b^2y}{a^2b^2+1}\right)^2+\left[a^2b^2-\frac{a^4b^4}{a^2b^2+1}\right]y^2 \\ & =(a^2b^2+1)\left(x-\frac{a^2b^2y}{a^2b^2+1}\right)^2+\left(\frac{a^2b^2}{a^2b^2+1}\right)y^2 \\ \end{align}$$ Then we know that $$\int_{-\infty}^{\infty}e^{\frac{-(a^2b^2+1)\left(x-\frac{a^2b^2y}{a^2b^2+1}\right)^2}{2a^2b^2}}dx=\int_{-\infty}^{\infty}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx=\sqrt{2\pi}\sigma$$ Where $$\mu=\frac{a^2b^2y}{a^2b^2+1}$$ $$\sigma=\frac{ab}{\sqrt{a^2b^2+1}}$$ So now you have $$\begin{align}\int_{-\infty}^{\infty}\frac1{\sqrt{2\pi}}e^{-\frac{(y-x)^2}{2}}\frac1{\sqrt{2\pi}ab}e^{-\frac{x^2}{2(ab)^2}}dx & =\frac1{\sqrt{2\pi}}\frac1{\sqrt{2\pi}ab}\frac{\sqrt{2\pi}ab}{\sqrt{a^2b^2+1}}e^{-\frac{y^2}{2\left(\sqrt{a^2b^2+1}\right)^2}} \\ & = \frac1{\sqrt{2\pi}\sqrt{a^2b^2+1}}e^{-\frac{y^2}{2\left(\sqrt{a^2b^2+1}\right)^2}} \end{align}$$ So the means add, $0+0=0$, as do the variances, $1+a^2b^2=\left(\sqrt{a^2b^2+1}\right)^2$, just like they are supposed to.

user5713492
  • 16,333
2

Since the given integral is a convolution an alternative solution could be based on Fouriertransformation.

We know that $$ e^{-x^{2}}\overset{\mathcal F}{\longmapsto} \sqrt{\pi}e^{-{\xi}^{2}/4}. $$ where ${\mathcal F}$ is the Fouriertransformation.

It is a basic fact that $$ f(x)\overset{\mathcal F}{\longmapsto} F(\xi) \Longrightarrow f(ax)\overset{\mathcal F}{\longmapsto} \dfrac{1}{|a|}F\left(\dfrac{\xi}{a}\right). $$ where $a$ is a non-zero real number. Now the Fourier transformation of the given integral yields that $$ \dfrac{1}{\sqrt{2\pi}}\sqrt{2\pi}e^{-2\xi^{2}/4}\dfrac{1}{\sqrt{2\pi}ab}\sqrt{2\pi}abe^{-2(ab)^{2}\xi^{2}/4}= e^{-2(1+(ab)^{2})\xi^{2}/4}. $$ Finally we receive the integral via inverse Fourier transformation $$ \dfrac{1}{\sqrt{2\pi}\sqrt{1+a^{2}b^{2}}}e^{-y^{2}/(2(1+a^{2}b^{2}))}. $$

JanG
  • 4,872