I want to compute the integral:
$\displaystyle \int^{\infty} _{-\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-x)^2}{2}} \frac{1}{\sqrt{2\pi}ab} e^{-\frac{x^2}{2(ab)^2}} dx$
Maybe we can use that for a normal distribution with mean $\mu$ and variance $\sigma^2$ we have
$\displaystyle \int^{\infty} _{-\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2 \sigma^2}} dx = 1$
In an effort to write the integral in this form, I tried to take the exponents together. This gives:
$\displaystyle -\frac{(y-x)^2}{2} - \frac{x^2}{2(ab)^2} = \frac{-[(ab)^2 (y-x)^2 + x^2]}{2(ab)^2} = \frac{-[(ab)^2 (y^2 -2xy +x^2) + x^2]}{2(ab)^2}$
But this leads to nowhere. Any suggestions?