I have a $4\times4$ matrix $A$, which is composed of two $2 \times 2$ Jordan blocks.
The matrix in question is the matrix associated with a particular system of differential equations.
so, $$e^{Ax} = \sum_{k = 0}^{\infty}\frac{A^kx^k}{k!} = \sum_{k = 0}^{\infty}\frac{ \begin{bmatrix} L & 0 \\ 0 & K \end{bmatrix} ^kx^k}{k!} = \sum_{k = 0}^{\infty}\frac{ \begin{bmatrix} L^k & 0 \\ 0 & K^k \end{bmatrix} x^k}{k!}$$
I feel uncomfortable manipulating block matrices(block matrix-vector multiplication).
what would be the next step?
I would like to have something along the lines of $e^{Kx}e^{Lx}$ I could try:
$$e^{A} = \sum_{k = 0}^{\infty}\frac{A^k}{k!} = \sum_{k = 0}^{\infty}\frac{ \begin{bmatrix} L & 0 \\ 0 & K \end{bmatrix} ^k}{k!} = \sum_{k = 0}^{\infty}\frac{ \begin{bmatrix} L^k & 0 \\ 0 & K^k \end{bmatrix} }{k!}= \begin{bmatrix} e^L & 0 \\ 0 & e^K \end{bmatrix}$$
Then $e^{Ax} = [e^A]^x =[\begin{bmatrix} e^L & 0 \\ 0 & e^K \end{bmatrix} ]^x = \color{red}{\begin{bmatrix} e^{Lx} & 0 \\ 0 & e^{Kx} \end{bmatrix}}$ Would this logic work out?