0

If $I\subseteq J$ are ideals in a polynomial ring of $n$ variables, how do I prove that $I = J$ if $\operatorname{in}_{\lt}(I)=\operatorname{in}_{\lt}(J)$, where $\lt$ is any monomial ordering?

Obviously it suffices to prove that $J \subseteq I$. I'm stuck with how to go forward once I pick an arbitrary element $f \in J$ and have that $\operatorname{in}_{\lt}(f) \in \operatorname{in}_{\lt} (J)=\operatorname{in}_{\lt}(I)$.

user26857
  • 53,190
Mark
  • 2,082

2 Answers2

1

Proposition 2.2.6 of the book "Monomial Ideals" by "Herzog-Hibi"
If $I\neq J$ then $f\in J\setminus I$. Let $f'$ be the remainder of $f$ with respect to a Grobner basis of $I$. Then $f'\neq 0$, $f'\in J$ and $supp f' \nsubseteq in_<(I) $. So $ in_<f' \in in_<(J)-in_<(I)$

user 1
  • 7,652
  • Thank you for answering. I'm new to this, can you please explain why $f' \not= 0$? – Mark Mar 19 '16 at 17:20
  • youre welcome. if f'=0 then $f\in I$. (Corollary 2.2.4. If G = {g1, . . . , gs} is a Gr¨obner basis of I = (g1, . . . , gs), then a nonzero polynomial f of S belongs to I if and only if the unique remainder of f with respect to g1, . . . , gs is 0.) – user 1 Mar 19 '16 at 17:22
1

There is no need to use Gröbner bases, Dickson's lemma is enough.

Suppose there is $f\in J\setminus I$ and choose $f$ with $\operatorname{in}(f)$ minimal. Then $\operatorname{in}(f)\in\operatorname{in}(J)=\operatorname{in}(I)$, so there is $g\in I$ such that $\operatorname{in}(f)=\operatorname{in}(g)$. We have $\operatorname{in}(f-g)<\operatorname{in}(f)$, and $f-g\in J\setminus I$, a contradiction.

user26857
  • 53,190