5

let $A,B\in M_n$, suppose

  • $A>0$ (i.e, all $a_{ij}>0$)
  • $\rho (A) = \max \{ \left| \lambda \right|:\lambda $ is eigenvalue of $A$ $\}$
  • $B>0$
  • $A-B>0$

Why does $\rho (A) - \rho (B) > 0$?

Bart Michels
  • 26,985
  • 6
  • 59
  • 123
H....
  • 1,909

2 Answers2

3

EDITED: Let $A(t) = B + t (A-B)$ interpolate linearly between $B$ at $t=0$ and $A$ at $t=1$. Thus $A(t)$ is a positive matrix and so is its derivative $A'(t)$. By Perron-Frobenius, $\rho(A(t)) = \lambda(t)$ is a simple eigenvalue, with left and right eigenvectors $v^T(t)$, $u(t)$ having positive entries; we can normalize them so that $v(t)^T u(t) = 1$. Moreover, $\lambda(t)$, $v^T(t)$, $u(t)$ are differentiable (in fact real-analytic) as functions of $t$. Differentiating $v(t)^T u(t) = 1$ we get $v(t)^T u'(t) + v'(t)^T u(t)= 0$. Now differentiating the equation $\lambda(t) = v(t)^T A(t) u(t)$ we get $$ \eqalign{\lambda'(t) &= v'(t)^T A(t) u(t) + v(t)^T A'(t) u(t) + v(t)^T A(t) u'(t)\cr &= \lambda(v'(t)^T u(t) + v(t)^T u'(t)) + v(t)^T A'(t) u(t)\cr &= v(t)^T A'(t) u(t) > 0}$$

Robert Israel
  • 470,583
0

Hints : Let $x$ be the Perron vector of $A$ , so that $Ax>Bx$ and ......

Nokia
  • 1