0

Given random variables $Y_1, Y_2, ... \stackrel{iid}{\sim} P(Y_i = 1) = p = 1 - q = 1 - P(Y_i = -1)$ where $p > q$ in a filtered probability space $(\Omega, \mathscr F, \{\mathscr F_n\}_{n \in \mathbb N}, \mathbb P)$ where $\mathscr F_n = \mathscr F_n^Y$,

define $X = (X_n)_{n \ge 0}$ where $X_0 = 0$ and $X_n = \sum_{i=1}^{n} Y_i$.

It can be shown that the stochastic process $M = (M_n)_{n \ge 0}$ where $M_n = X_n - n(p-q)$ is a ($\{\mathscr F_n\}_{n \in \mathbb N}, \mathbb P)-$martingale.

Let $T$ be a $\{\mathscr F_n\}_{n \in \mathbb N}$-stopping time. Prove that $\forall n \ge 1$

$$E[X_{T \wedge n}] = (p-q)E[T \wedge n]$$


What I tried:

$$E[X_{T \wedge n}] = [\sum_{i=0}^{n-1} E[X_{T \wedge n} 1_{T=i}]] + E[X_{T \wedge n} 1_{T \ge n}]$$

$$ = [\sum_{i=0}^{n-1} E[X_{T \wedge n} |T=i]P(T=i)] + E[X_{T \wedge n} | T \ge n]P(T \ge n)$$

$$ = [\sum_{i=0}^{n-1} E[X_i]P(T=i)] + E[X_n]P(T \ge n)$$

$$ = [\sum_{i=0}^{n-1} (i)(p-q)P(T=i)] + (n)(p-q)P(T \ge n)$$

$$ = [\sum_{i=0}^{n-1} (i)(p-q)P(T=i)] + (n)(p-q)\sum_{i=n}^{\infty} P(T=i)$$

$$ = [\sum_{i=0}^{n-1} (i)(p-q)P(T=i)] + \sum_{i=n}^{\infty} (n)(p-q)P(T=i)$$

$$ = \sum_{i=1}^{\infty} (n \wedge i)(p-q)P(T=i)$$

$$ = (p-q) \sum_{i=1}^{\infty} (n \wedge i)P(T=i)$$

$$ = (p-q) E[n \wedge T]$$

Is that right?

BCLC
  • 14,197

1 Answers1

0

$$E[M_{T \wedge n}] = E[X_{T \wedge n} - (T \wedge n)(p-q)]$$

$$0 = E[M_0] = E[M_{T \wedge n}]$$

Hence

$$0 = E[X_{T \wedge n} - (T \wedge n)(p-q)]$$

$$\to 0 = E[X_{T \wedge n}] - E[(T \wedge n)](p-q) \ QED$$

BCLC
  • 14,197