For a standardized binomial distributed random variable $\tilde B_n$ we have
$$P(\tilde B_n\le x) = \Phi(x) + \frac {q-p}{6\sqrt{npq}} (1-x^2) \phi(x) + \frac{R_1\left(np+x\sqrt{npq}\right)}{\sqrt{npq}}\phi(x) + O\left(\frac 1n\right)$$
with $R_1(x)=\lfloor x \rfloor -x +\frac 12$ [1].
Question: What is the Edgeworth Expension for $P( a \le \tilde B_n \le b)$? Is it true, that it is
$$\begin{align} P( a \le \tilde B_n \le b) &= \Phi(b)-\Phi(a) + \frac {q-p}{6\sqrt{npq}} (1-b^2) \phi(b) - \frac {q-p}{6\sqrt{npq}} (1-a^2) \phi(a) \\ & + \frac{R_1\left(np+b\sqrt{npq}\right)}{\sqrt{npq}}\phi(b)-\frac{R_2\left(np+a\sqrt{npq}\right)}{\sqrt{npq}}\phi(a) + O\left(\frac 1n\right) \end{align}$$
with $R_2(x)=\lceil x \rceil -x -\frac 12$ ?