Yes, you're doing good. For the convex conjugate (aka Legendre transform) of an arbitrary norm, see this answer.
Regarding the second part of your question,
Claim: Let $X$ be a Hilbert space, $\alpha$ be a nonzero real number, $f : X \rightarrow (-\infty, +\infty]$ be a function, and $g = \alpha f$. Then $g^*(x) \equiv \alpha f^*(x/\alpha)$.
Proof. For any $x \in X$, we have
\begin{equation}
g^*(x) := \sup_{z \in X}\langle x, z\rangle - g(z) = \sup_{z \in X}\langle x, z\rangle - \alpha f(z) = \alpha \sup_{z \in X}\langle x/\alpha, z\rangle - f(z) =: \alpha f^*(x/\alpha).
\end{equation}
Thus in particular, taking $f = \|.\|_1$, we obtain $(\alpha \|.\|_1)^*(x) = \alpha \|x/\alpha\|^*_1 = \begin{cases}0, &\mbox{ if }\|x\|_\infty \le \alpha,\\+\infty, &\mbox{ otherwise.}\end{cases}$.
For more transformation rules concerning convex conjugates, you may checkout this answer. Another useful resource is this table.