Let $f:X\rightarrow ]-\infty,+\infty]$, let $b\in x$ and let $c\in X$. Find Fenchel conjugates of the functions:
$(i)\;\;\;\; f(x)+\langle c,x\rangle,$
$(ii)\;\;\;\; f(x-c).$
For (i) I'm thinking the formula is $f^*(v)=\sup \langle x,v-c\rangle-f(x)$ and my justification is as follows:
\begin{align} f^*(v)&=\sup \langle x,v\rangle-(f(x)+\langle c,x\rangle)\\ &=\sup \langle x,v\rangle-f(x)-\langle c,x\rangle\\ &=\sup xv -f(x) -xc\\ &=\sup \langle x,v-c\rangle-f(x) \end{align} Does this look correct?
For (ii), intuitively, I want to say $f^*(v)=\sup \langle x,v\rangle-f(x)-(\sup \langle x,v\rangle-f(c))$, but I am not sure how to justify this, so I suspect it i not correct. Any help in the right direction is greatly appreciated.