I'm trying to show that A be a $ 3 x 3 $ upper triangular matrix with $det \ne 0 $. Show by explicit computation that $A^{-1}$ is also upper triangular. Simple showing is enough for me.
$$A= \begin{bmatrix}\color{blue}a & \color{blue}b & \color{blue}c \\0 & \color{blue}d & \color{blue}e \\ 0 & 0 &\color{blue}f\end{bmatrix}$$
Can someone explain and show it?
$$ A=\left(\begin{array}{rrr}% a&b&c\\% 0&d&e\\% 0&0&f\\% \end{array}\right)% $$ $$ x11=\left(\begin{array}{rrr}% d&e\\% 0&f\\% \end{array}\right)% =df, x12=-\left(\begin{array}{rrr}% 0&e\\% 0&f\\% \end{array}\right)% =0, x13=\left(\begin{array}{rrr}% 0&d\\% 0&0\\% \end{array}\right)% =0 $$ $$ x21=-\left(\begin{array}{rrr}% b&c\\% 0&f\\% \end{array}\right)% =-bf, X22=\left(\begin{array}{rrr}% a&c\\% 0&f\\% \end{array}\right)% =af, X23=-\left(\begin{array}{rrr}% a&b\\% 0&0\\% \end{array}\right)% =0 $$ $$ x31=\left(\begin{array}{rrr}% b&c\\% d&e\\% \end{array}\right)% =bc-cd, x32=-\left(\begin{array}{rrr}% a&c\\% 0&e\\% \end{array}\right)% =ac, x31=\left(\begin{array}{rrr}% a&b\\% 0&d\\% \end{array}\right)% =ad $$ $$ adjoint A = \left(\begin{array}{rrr}% df&0&0\\% -bf&af&0\\% bc-cd&-ac&ad\\% \end{array}\right)% $$ $$ det A = a\left(\begin{array}{rrr}% d&e\\% 0&f\\% \end{array}\right)% =adf $$ $$ Inverse-A =1/adf \left(\begin{array}{rrr}% df&0&0\\% -bf&af&0\\% bc-cd&-ac&ad\\% \end{array}\right)% $$ It came out lower triangular matrix. Is there any way to make it upper triangular matrix?