6

I want to evaluate the following: $\lim_{n\rightarrow \infty} \sqrt{n} \sin^{(n)}(2/\sqrt{n})$, where $\sin^{(n)}$ is the iterated sine function.

I do know the proof for $\lim_{n\rightarrow \infty} \sqrt{n} \sin^{(n)}(x_0) =\sqrt{3}$ for any non trivial $x_0 \neq k\pi$ (by using Stolz-Cesaro's theorem with $a_n=\sin^{(n)}(x_0)$,$b_n=n$, and then proving the convergence of $\lim_{n\rightarrow \infty} \frac{1}{a_{n+1}^2}-\frac{1}{a_{n}^2} =1/3$). It seems like the same proof holds for $x_0=1/\sqrt{n}$ and $x_0=2/\sqrt{n}$ and hence proves $\lim_{n\rightarrow \infty} \sqrt{n} \sin^{(n)}(2/\sqrt{n})=\sqrt{3}$. But I am not entirely sure, could you clarify?

Asaf Karagila
  • 405,794
Vaas
  • 475

1 Answers1

9

Claim. For any $x \in \Bbb{R}$ the limit is given by $$ \lim_{n\to\infty} \sqrt{n} \sin^{\circ n}\left( \frac{x}{\sqrt{n}} \right) = \frac{\sqrt{3}x}{\sqrt{x^2+3}}. $$


Proof. To prove this, WLOG we assume that $x > 0$. Let $f_n(x) = \sqrt{n}\sin(x/\sqrt{n})$ and define

$$ x_{n;0} = x, \qquad x_{n;k+1} = f_n(x_{n;k}). $$

Also, for brevity, we suppress the dependence on $n$ to simply write $x_k = x_{n;k}$ unless we need it explicitly. Now using the inequality $|\sin \theta| \leq |\theta|$, we know that $|x_{k}| \leq |x|$ uniformly in $n$ and $k$. Then it follows that

\begin{align*} \frac{1}{x_{n}^2} &= \frac{1}{x^2} + \sum_{k=0}^{n-1} \left( \frac{1}{x_{k+1}^2} - \frac{1}{x_{k}^2} \right) \\ &= \frac{1}{x^2} + \sum_{k=0}^{n-1} \frac{(x_{k} - x_{k+1})(x_{k} + x_{k+1})}{x_{k}^2 x_{k+1}^2} \\ &= \frac{1}{x^2} + \sum_{k=0}^{n-1} \frac{\left( \frac{1}{6n}x_k^3 + \mathcal{O}(n^{-2}x_k^3 ) \right)\left( 2x_k + \mathcal{O}(n^{-1}x_k) \right)}{x_{k}^2 \left( x_k + \mathcal{O}(n^{-1}x_k) \right)^2} \\ &= \frac{1}{x^2} + \frac{1}{3n} \sum_{k=0}^{n-1} \left( 1 + \mathcal{O}(n^{-1} ) \right) \\ &= \frac{1}{x^2} + \frac{1}{3} + \mathcal{O}(n^{-1}). \end{align*}

It is easy to check that $x_n = x_{n;n}$ is positive when $n$ is large. Consequently we obtain

$$ \lim_{n\to\infty} \sqrt{n} \sin^{\circ n}\left( \frac{x}{\sqrt{n}} \right) = \lim_{n\to\infty} x_{n;n} = \frac{\sqrt{3}x}{\sqrt{x^2+3}}. $$


Addendum. The following is a numerical test with $n = 1000$ iterations:

enter image description here

Sangchul Lee
  • 181,930