The question asked is
Is it known if there are infinitely (non-proportional) many integer solutions to $x^3+2y^3+6xyz=3z^3$ ?
This is a special case of the general equation
$\,Ax^3 + By^3 + Cz^3 + 3Dxyz = 0\,$ studied by Edouard Lucas on
page $15$ in the document at URL
Recherches sur L'Analyse Indeterminee et L'Arithmetique de Diophante.
He first gives a formula for getting a new points from a given point:
$$X = x(By^3 - Cz^3),\\
Y = y(Cz^3 - Ax^3),\\
Z = x(Ax^3 - By^3).$$
Then gives as an example the special case
$x^3 + 2y^3 + 3z^3 = 6xyz$.
Starting from $(1,1,1)$ he produces three
other integer solutions:
$(1,-2,1),\:$ $(19,4,-17),\:$ $(282473,-86392,-114427)\:$
using his duplication formula. This already
answers the question asked (with $z$
replaced by $-z$).
I use generalized Somos-4 sequences to produce all solutions.
Define four integer sequences
$$ u_0 = 0,\, u_1 = 1,\, u_2 = 2,\, u_3 = 105,\,u_4 = 1292,\, u_n = (-1)^n u_{-n},\\
u_n = (-4u_{n-1}u_{n-3} + 105u_{n-2}u_{n-2})/u_{n-4} \quad \text{ for }\quad n>4,\\
x_n = (-1)^n (u_{n-1} u_n u_{n+2} + 2u_{n-1} u_{n+1}^2 + 19u_n^2 u_{n+1})/2, \\
y_n = (-1)^n (- u_{n-1} u_n u_{n+2} + u_{n-1} u_{n+1}^2 + 2u_n^2 u_{n+1}), \\
z_n = (-1)^n (- u_{n-1} u_n u_{n+2} - 2u_{n-1} u_{n+1}^2 + 17u_n^2 u_{n+1})/2. $$
Then $ x_n^3 + 2y_n^3 + 6x_n y_n z_n = 3z_n^3 $
for all integer $n$.
Hence there are infinitely many solutions.
This is small table of values of the four sequences:
$$\begin{array}{|c|c|c|c|c|} \hline
n & x & y & z & u \\ \hline
-3 & 282473 & -86392 & 114427 & 105 \\ \hline
-2 & 143 & 113 & -71 & -2 \\ \hline
-1 & 1 & -2 & -1 & 1 \\ \hline
0 & 1 & 1 & -1 & 0 \\ \hline
1 & -19 & -4 & -17 & 1 \\ \hline
2 & 16307 & 9281 & -8747 & 2 \\ \hline
3 & -259124723 & 209103562 & 2727323 & 105 \\ \hline
\end{array}$$