
I am not finding a short online summary of the composition of two binary quadratic forms, as done by Dirichlet. Also, the edition of Cox that I have has a typo, corrected in the second edition (2013), here it is.
Given $\gcd(a,a',B) = 1,$ define
$$ X = xz-Cyw, $$
$$ Y = axw + a'yz + B yw, $$ then
$$ (a x^2 + B xy + a'C y^2) (a' z^2 + B zw + aC w^2) = aa'X^2 + B XY + C Y^2 $$
which you ought to check!
Here are the binary forms (primitive) of discriminant $-284$
Discr -284 = 2^2 * 71 class number 7
all
284: < 1, 0, 71>
284: < 3, -2, 24>
284: < 3, 2, 24>
284: < 5, -4, 15>
284: < 5, 4, 15>
284: < 8, -2, 9>
284: < 8, 2, 9>
The first few primes integrally represented by $3x^2 + 2xy+24y^2$ are
$$ 3, 29, 89, 103, 109, 151, 157, 191, $$ and below, we show how to represent each $p^7$ once we have $x,y.$
compared with $-71$ primitive, where this time a form represents the prime $2$
Discr -71 = 71 class number 7
all
71: < 1, 1, 18>
71: < 2, -1, 9>
71: < 2, 1, 9>
71: < 3, -1, 6>
71: < 3, 1, 6>
71: < 4, -3, 5>
71: < 4, 3, 5>
ummmm, $h(-71) = h(-284) = 7.$ Since $4 \cdot 3^7 - 284 = 92^2,$ the principal form is $\langle 1, 92, 2187\rangle.$ The class group is cyclic, everything is a power of $\langle 3, 92, 729 \rangle$ under Dirichlet's version of Gauss composition. All I am doing is repeatedly multiplying by $3 x^2 + 92 xy + 729 y^2,$ the rules for composition eventually give the quadratic form $\langle 2187, 92, 1 \rangle$ with variables which are homogeneous degree seven in the original $x,y.$ Oh, any form that represents $1$ is $SL_2 \mathbb Z$ equivalent to the principal form. At the very end, I show how to write $t^2 + 71 z^2 = (3 x^2 + 92 xy + 729 y^2)^7. $ I am showing the whole gp-pari session, there is nothing difficult once we get that fortunate expression for the coefficients of a generator of the group.
a=3; a1=3; b=92; c=243; z = x; w = y;
zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a=3; a1=3; b=92; c=243; z = x; w = y;
? zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%3 = x^2 - 243y^2
? w
%4 = 6yx + 92y^2
?
a1 = 9; c = 81; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a1 = 9; c = 81; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%6 = x^3 - 729y^2x - 7452y^3
? w
%7 = 27yx^2 + 828y^2x + 6277y^3
?
a1 = 27; c = 27; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a1 = 27; c = 27; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%9 = x^4 - 1458y^2x^2 - 29808y^3x - 169479y^4
? w
%10 = 108yx^3 + 4968y^2x^2 + 75324y^3x + 376280y^4
?
?
a1 = 81; c = 9; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a1 = 81; c = 9; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%12 = x^5 - 2430y^2x^3 - 74520y^3x^2 - 847395y^4x - 3386520y^5
? w
%13 = 405yx^4 + 24840y^2x^3 + 564930y^3x^2 + 5644200y^4x + 20889961y^5
?
a1 = 243; c = 3; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a1 = 243; c = 3; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%15 = x^6 - 3645y^2x^4 - 149040y^3x^3 - 2542185y^4x^2 - 20319120y^5x - 62669883y^6
? w
%16 = 1458yx^5 + 111780y^2x^4 + 3389580y^3x^3 + 50797800y^4x^2 + 376019298y^5x + 1098952052y^6
?
?
a1 = 729; c = 1; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
?
? a1 = 729; c = 1; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
?
? z
%18 = x^7 - 5103y^2x^5 - 260820y^3x^4 - 5931765y^4x^3 - 71116920y^5x^2 - 438689181y^6x - 1098952052y^7
? w
%19 = 5103yx^6 + 469476y^2x^5 + 17795295y^3x^4 + 355584600y^4x^3 + 3948202629y^5x^2 + 23077993092y^6x + 55417244077y^7
?
2187 * z^2 + 92 * z * w + w^2
( 3 * x^2 + 92 * x * y + 729 * y^2)^7
?
? 2187 * z^2 + 92 * z * w + w^2
%20 = 2187x^14 + 469476yx^13 + 46911879y^2x^12 + 2892076488y^3x^11 + 122889105423y^4x^10 + 3807263630268y^5x^9 + 88688782583499y^6x^8 + 1578039270279536y^7x^7 + 21551374167790257y^8x^6 + 224815110103695132y^9x^5 + 1763324345027822661y^10x^4 + 10084047184857263688y^11x^3 + 39747900724268273397y^12x^2 + 96660945131267433924y^13x + 109418989131512359209y^14
?
?
? ( 3 * x^2 + 92 * x * y + 729 * y^2)^7
%21 = 2187x^14 + 469476yx^13 + 46911879y^2x^12 + 2892076488y^3x^11 + 122889105423y^4x^10 + 3807263630268y^5x^9 + 88688782583499y^6x^8 + 1578039270279536y^7x^7 + 21551374167790257y^8x^6 + 224815110103695132y^9x^5 + 1763324345027822661y^10x^4 + 10084047184857263688y^11x^3 + 39747900724268273397y^12x^2 + 96660945131267433924y^13x + 109418989131512359209y^14
?
? 2187 * z^2 + 92 * z * w + w^2 - ( 3 * x^2 + 92 * x * y + 729 * y^2)^7
%22 = 0
?
t = w + 46 * z
t^2 + 71 * z^2
?
? t = w + 46 * z
%23 = 46x^7 + 5103yx^6 + 234738y^2x^5 + 5797575y^3x^4 + 82723410y^4x^3 + 676824309y^5x^2 + 2898290766y^6x + 4865449685y^7
?
?
?
? t^2 + 71 * z^2
%24 = 2187x^14 + 469476yx^13 + 46911879y^2x^12 + 2892076488y^3x^11 + 122889105423y^4x^10 + 3807263630268y^5x^9 + 88688782583499y^6x^8 + 1578039270279536y^7x^7 + 21551374167790257y^8x^6 + 224815110103695132y^9x^5 + 1763324345027822661y^10x^4 + 10084047184857263688y^11x^3 + 39747900724268273397y^12x^2 + 96660945131267433924y^13x + 109418989131512359209y^14
?
? t^2 + 71 * z^2 - ( 3 * x^2 + 92 * x * y + 729 * y^2)^7
%25 = 0
?
?
? t
%26 = 46x^7 + 5103yx^6 + 234738y^2x^5 + 5797575y^3x^4 + 82723410y^4x^3 + 676824309y^5x^2 + 2898290766y^6x + 4865449685y^7
?
? z
%27 = x^7 - 5103y^2x^5 - 260820y^3x^4 - 5931765y^4x^3 - 71116920y^5x^2 - 438689181y^6x - 1098952052*y^7
?
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=