Since $A$ is real symmetric, there exists a matrix $P$ such that
$$PAP^{-1} = D =\verb/diag/(\lambda_1,\lambda_2,\ldots,\lambda_n)$$
is diagonal with eigenvalues $\lambda_1,\ldots,\lambda_n$. This leads to
$$P (I_n+A)^{-2}P^{-1} = (I_n + PAP^{-1})^{-2} = \verb/diag/\left(\frac{1}{(1+\lambda_1)^2},\ldots,\frac{1}{(1+\lambda_n)^2}\right)\\
\implies \verb/Tr/((I_n + A)^{-2}) = \sum_{i=1}^{n}\frac{1}{(1+\lambda_i)^2}$$
Consider the function $g(x) = \frac{1}{(1+x)^2}$. It is easy to check
for $x \in (0,\infty)$,
$$g(x) > 0,
\quad
g'(x) = -\frac{2}{(1+x)^3} < 0
\quad\text{ and }\quad
g''(x) = \frac{6}{(1+x)^4} > 0$$
This means $g(x)$ is a positive, monotonic decreasing and convex function over $(0,\infty)$.
By Jensen's inequality,
we obtain following lower bound:
$$\verb/Tr/((I_n + A)^{-2})
= \sum_{i=1}^{n} g(\lambda_i)
\underbrace{\ge}_{\text{Jensen}}
n g\left(\frac1n\sum_{i=1}^n \lambda_i\right)
\underbrace{\ge}_{g\text{ decreasing}}
n g(1) = \frac{n}{4}$$
Since $\verb/Tr/(I_n) \le n$ and $\verb/Tr/((I_n + I_n)^{-2}) = \frac{n}{4}$, above lower bound $\frac{n}{4}$ is achievable and hence the optimal one.
As a consequence,
your intution $\verb/Tr/((I_n + A)^{-1}) \ge \frac14$ is true (but far from the optimal).