Note $\ \overbrace{2^6\!-2}^{\large\color{#0a0}j} = 0 = \overbrace{3^6\!-3}^{\large\color{#0a0} k},\,$ so by $\rm\color{darkorange}{Bezout}$ their gcd $\,\color{#d0f}2 = (\color{#0a0}{j,k}) =\:\! n\color{#0a0}j+m\color{#0a0}k = 0$.
Similarly $\ f(x) = x^6\!-x = 0 = \underbrace{f(x\!+\!1)}_{\large g(x)},\,$ so over $\,\color{#d0f}{\Bbb F_2}\!:\,$ $\,\underbrace{\color{#0af}{x^2\!-\!x} = \gcd(f,g)=0.\ \ \bf\small QED}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\large \text{by $\rm\color{darkorange}{Bezout:}$}\ \ =\,\ h\:\! f\, +\, k\:\!g\, =\, 0+0}$
Note $ $ Mark's answer effectively computes the above gcd of $f(x)$ and $\, g(x)=f(x\!+\!1)$ over $\,\Bbb F_2$ (i.e. $\!\bmod 2)\,$ in an ad-hoc way. Indeed, examining it closely shows that each step corresponds to a step in the extended gcd computation below. The advantage of using the Euclidean gcd algorithm is that no ingenuity is required, and it it works far more generally, and it is very efficient.
$\!\begin{align}
[\![1]\!]\:\!\ \ g = (x\!+\!1)^6\!-\!(x\!+\!1)\, &=\, \left<\,\color{#c00}1,\ \ \ \ \color{#0a0}0\,\right>\qquad \ {\rm i.e.}\qquad\ \ \ g\, =\:\, \color{#c00}1\cdot g\, +\, \color{#0a0}0\cdot f\\[.1em]
[\![2]\!] \qquad\qquad\ \, f =x^6\!-x\ \, &=\, \left<\,\color{#c00}0,\ \ \ \ \color{#0a0}1\,\right>\qquad\ {\rm i.e.}\qquad\ \ \ f\ =\,\ \color{#c00}0\cdot g\, +\, \color{#0a0}1\cdot f\\[.1em]
[\![3]\!]:=[\![1]\!]+[\![2]\!]\qquad\qquad x^4\!+\!x^2 &=\, \left<\,\color{#c00}1,\quad\color{#0a0}{1}\,\right>\qquad\ \:\!{\rm i.e.}\,\ \ x^4\!+\!x^2 =\, \color{#c00}1\cdot g\: +\,\color{#0c0}{1}\cdot f\\[.1em]
[\![4]\!]:=[\![2]\!]+(x^2\!+\!1)[\![3]\!]\ \ \ \color{#0af}{x^2\!+\!x}\ \,&=\, \left<\,\color{#c00}{x^2\!+\!1},\, \color{#0a0}{x^2}\,\right>\ \: {\rm i. e.}\,\ \ \underbrace{\color{#0af}{x^2\!+\!x} = (\color{#c00}{x^2\!+\!1})g + \color{#0a0}{x^2} f}_{\textstyle\rm \color{darkorange}{Bezout}}
\end{align}$
Note: I omitted computation of the final remainder $(= 0)$ since we don't need it here, since $\,f,g=0 \Rightarrow \color{0af}{x^2\!+\!x} = af+bg = 0$, i.e. we only need $\,(\color{#0af}{x^2\!+\!x})\subseteq (f,g),\,$ not also its reverse.
This method of deriving consequences polynomial identities by taking gcds with substituted arguments often proves useful, e.g. see the literature I cite in this answer.