9

Let $A$ be $n \times n$ matrix and $A^2=A^*A$. Why is $A$ a Hermitian matrix?

Kavir
  • 91
  • 1
  • 2

2 Answers2

15

Let us first do a calculation (where we use the assumption) $$ (A-A^*)^*(A-A^*)=(A^*-A)(A-A^*)=A^*A-(A^*)^2-A^2+AA^*=AA^*-(A^*)^2. $$ Now $$ ((A^*)^2)^*=A^2=A^*A, $$ so $$ (A^*)^2=(A^*A)^*=A^*A. $$ Inserting this into the calculation above, $$ (A-A^*)^*(A-A^*)=AA^*-A^*A $$

But then the trace of that matrix on the left-hand side is zero, since (here we use that the trace is linear and that $\text{tr}\,(AB)=\text{tr}\,(BA)$) $$ \text{tr}\,(AA^*-A^*A)=\text{tr}\,AA^*-\text{tr}\,A^*A=0. $$ Hence $$\text{tr}\,(A-A^*)^*(A-A^*)=0. $$ Thus, the square of the Frobenius norm of $A-A^*$ is zero. It follows that $A-A^*=0$, and thus that $A$ is Hermitian.

mickep
  • 20,102
1

This question is the complex counterpart of

if matrix such $AA^T=A^2$ then $A$ is symmetric?

With the inner product $\langle X,Y\rangle=\operatorname{Re}\operatorname{tr}(XY^\ast)$ defined on the real linear space $M_n(\mathbb C)$, Hermitian matrices are orthogonal to skew-Hermitian matrices. Now, if we denote the Hermitian and skew-Hermitian parts of $A$ by respectively $H$ and $K$, the condition $AA^\ast=A^2$ implies that $\langle K,K\rangle=\langle K,H\rangle=0$. Therefore $K=0$ and $A$ is Hermitian.

user1551
  • 149,263