For Uniform distribution U[0,$\theta$], Given random samples of size n, I want to find the MP test for
$H_0$ : $\theta$ = $\theta_0$ vs $H_1$ : $\theta$ = $\theta_1$ ($\theta_1$ < $\theta_0$)
$\frac{pdf(X:\theta_1)}{pdf(X:\theta_0)}$ = $\frac{\theta_0^n}{\theta_1^n}$ $\frac{I(X_{(n)} <\theta_1)}{I(X_{(n)} <\theta_0)}$ and let's call this value S. then
S = $\frac{\theta_0^n}{\theta_1^n}$ if $X_{(n)} <\theta_1$, 0 if $X_{(n)} >\theta_1$
by Theorem, $\phi$ = 1 if S>c, $\gamma$ if S=c, 0 if S< c for some non negative number c such that $E_{\theta_0} [\phi(X)]$ = $\alpha$ for given significance level of $\alpha$ is MP test.
So I have tried to find c. I considered several cases.
c > $\frac{\theta_0^n}{\theta_1^n}$. then $E_{\theta_0} [\phi(X)]$ = $Pr_{\theta_0}$(S>c)+$\gamma$$Pr_{\theta_0}$(S=c) = 0 < $\alpha$. it is invalid.
0 < c<$\frac{\theta_0^n}{\theta_1^n}$. then $Pr_{\theta_0}$(S>c)+$\gamma$$Pr_{\theta_0}$(S=c) = $Pr_{\theta_0}(X_{(n)} < \theta_1)$ = $\frac{\theta_1^n}{\theta_0^n}$ and it is not $\alpha$. So this case is also invalid
when c = 0, $Pr_{\theta_0}$(S>c)+$\gamma$$Pr_{\theta_0}$(S=c) = $Pr_{\theta_0}(X_{(n)} < \theta_1)$ + $\gamma$ $Pr_{\theta_0}(X_{(n)} > \theta_1)$ = $\frac{\theta_1^n}{\theta_0^n}$ + $\gamma$(1-$\frac{\theta_1^n}{\theta_0^n}$ ) = $\alpha$. So I can find $\gamma$.
Fianlly, when c = $\frac{\theta_0^n}{\theta_1^n}$, then $Pr_{\theta_0}$(S>c)+$\gamma$$Pr_{\theta_0}$(S=c) = $\gamma$$Pr_{\theta_0}(X_{(n)} < \theta_1)$ =$\gamma$$\frac{\theta_1^n}{\theta_0^n}$= $\alpha$. So in this case also, I can find $\gamma$.
So, I have two candidates for c. I derived two MP tests from both cases and compared the power of test under $H_1$, and found that c = 0 is more powerful. So I chose c = 0.
Is it right procedure? I'm not sure. or Is there any simpler way?