I am convinced that the following identity is true: \begin{equation} \det\begin{bmatrix} 1+a_1^2 & a_1 a_2 & a_1 a_3 & \ldots & a_1a_n \\ a_1a_2 & 1+a_2^2 & a_2a_3 & \ldots & a_2a_n \\ \ldots &\ldots &\dots & \ldots & \ldots \\ a_na_1 &a_na_2 & a_na_3 &\ldots &1+a_n^2 \end{bmatrix}= 1+ a_1^2+a_2^2+\dots+a_n^2. \end{equation} Can you help me proving it?
This determinant comes out in the computation of the volume form on a n-dimensional surface on $\mathbb{R}^{n+1}$ described by the equation \begin{equation} x_{n+1}=f(x_1\ldots x_n). \end{equation} The volume form is given by $\sqrt{g}dx_1\ldots dx_{n}$, where $g$ is the determinant above with $a_j=\partial_{x_j}f$. The result proven in this question & answer shows that the volume form is $$ \sqrt{1+\sum_{j=1}^n \left(\frac{\partial f}{\partial x_j}\right)^2}\, dx_1\ldots dx_n.$$