I am trying to understand symplectic transformations. Assume that $H(q,p)$ is a Hamiltonian and the corresponding Hamiltonian equations are given as,
\begin{cases} \dot q = \dfrac{\partial H}{\partial q}, \\[2ex] \dot p = -\dfrac{\partial H}{\partial p}. \end{cases}
Now lets assume that $z = [p;q]$ then
\begin{split} \dot z = \mathbb{J}\frac{\partial H}{\partial z}, \qquad \mathbb{J}= \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}. \end{split}
Now let $\phi$ be a transformation such that $\tilde z = \phi(z)$. Then \begin{split} \dot{\tilde z} = \frac{\partial \phi }{\partial z} \dot z = \frac{\partial \phi }{\partial z} \mathbb{J}\frac{\partial H}{\partial z}\stackrel{?}{=} \frac{\partial \phi }{\partial z} \mathbb{J} \frac{\partial \phi }{\partial z}^T \frac{\partial H}{\partial \tilde z}. \end{split}
I do not fully understand the final step in the previous equation. If that step is correct then obviously $\phi$ is symplectic if and only if \begin{split} \frac{\partial \phi }{\partial z} \mathbb{J} \frac{\partial \phi }{\partial z}^T = \mathbb{J}. \end{split}
How can we know that $\frac{\partial}{\partial z} = \frac{\partial \phi }{\partial z}^T \frac{\partial}{\partial \tilde z}$ when only thing we know is $\tilde z = \phi(z)$?