The following question is from Fred H. Croom's book "Principles of Topology"
Prove that each open ball $B(a,r), a\in \mathbb{R}^n, r>0$, considered as a subspace of $\mathbb{R}^n$, is homeomorphic to $\mathbb{R}^n$.
After much studying, I concluded the first way to approach this problem would be by showing that the unit open ball $B(\theta,1)$ with center and radius 1 is homeomorphic to $\mathbb{R}^n$. Afterwards, show how any open ball $B(a,r)$ is topologically equivalent to $B(\theta,1)$, thus ending my proof. However, I am having a hard time showing that $B(\theta,1)$ is homeomorphic to $\mathbb{R}^n$. Any suggestions?
I want to thank you for taking the time to read this question. I greatly appreciate any assistance you provide.