I've just read in a stochastics textbook:
Let $(\Omega, P)$ be a discrete probability space.
(a) The events $A_i \subseteq \Omega, i=1,2, \dots$ are called independent, if $$P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \cdot \dots \cdot A_{i_k}$$ for all finite sets $\{i_1, \dots, i_k\} \subsetneq \{1,2, \dots\}$ and all $k \geq 2$.
(b) The events $A_i \subseteq \Omega, i=1,2,\dots$ are called pairwise independent, if $$P(A_{i_1} \cap A_{i_2}) = P(A_{i_1}) \cdot P(A_{i_2})$$ for all pairs $\{i_1, i_2\} \subsetneq \{1,2,\dots\}$.
After these two definitions it states that pairwise independent events are not always independent.
Do you have an example?