So this is a exercise from the course compendium for a matrix course I'm currently taking.
"Prove that for any $n \times n$ matrix $A$ and $B$, $AB-BA \neq I$"
Is the proof that I have constructed a valid one?
$tr(AB-BA)_{ki}\neq tr(I)\\\leftrightarrow\sum_{i=1}^{n}\sum_{k=1}^{n}(A_{ik}B_{ki}-B_{ki}A_{ik})\neq tr(I) \\\leftrightarrow\sum_{i=1}^{n}\sum_{k=1}^{n}(A_{ik}B_{ki})-\sum_{i=1}^{n}\sum_{k=1}^{n}(B_{ki}A_{ik}) \neq tr(I)\\\leftrightarrow\sum_{i=1}^{n}\sum_{k=1}^{n}(A_{ik}B_{ki})-\sum_{k=1}^{n}\sum_{i=1}^{n}(A_{ik}B_{ki}) \neq tr(I)\\\leftrightarrow\sum_{i=1}^{n}\sum_{k=1}^{n}(A_{ik}B_{ki}-A_{ik}B_{ki})\neq tr(I)\\\leftrightarrow\sum_{i=1}^{n}\sum_{k=1}^{n}(0)\neq tr(I)\\\leftrightarrow 0 \neq tr(I) \\0 \neq n, n > 0 \\\blacksquare$
Thanks in advance.