Show that $(\mathbb{N}, d)$ is a metric space with $$d(x,y) = \frac{|x-y|}{1+|x-y|}$$
My attempt:
let $x,y \in \mathbb{N}$,
1) $d(x,y) = 0 \implies |x-y| = 0 \iff x = y$
2) $d(x,y) = d(y,x)$
3) show for $z \in \mathbb{N}$, $d(x,z) \leq d(x,y) + d(y,z)$
Using the triangle ineuqality I managed to get:
$$d(x,z) \leq \frac{|x-y|}{1+|x-y| - |y-z|} + \frac{|y - z|}{1 + |x-y| - |y-z|}$$
but i assume here I must use the fact that $x,y,z \in \mathbb{N}$ but I'm not sure how.
Any hints please:
edit: improvements on solution - Using fact that $|x-y|$ is a metric we have that $$d(x,y) \leq \frac{|x-y|}{1+|x-y| + |y-z|} + \frac{|y - z|}{1 + |x-y| + |y-z|}$$ (Since $|x-z| \leq |x-y| + |y-z|$) Is this correct? From there I can use the fact that $$\frac{1}{1+|x-y|+|y-z|} \leq \frac{1}{1+|x-y|} $$ and $$\frac{1}{1+|x-y|+|y-z|} \leq \frac{1}{1+|y-z|}$$ to conclude?