For $x,y \in \mathbb R$, let $d(x,y) = |x-y|/(1+|x-y|)$.
Determine whether $d$ defines a metric on $\mathbb R$.
If it does, determine whether $\mathbb R$ is compact under $d$.
Since $|x-y|=|y-x|$, $d$ is symmetric.
If $x \ne y$, then $|x-y|>0$, so $d(x,y)>0$.
Since $|x-x|=0$, then $d(x,x)=0$. So, $d(x,y) \ge 0$ with equality if and only if $x=y$.
I am having trouble showing the triangle inequality $$\frac{|x-y|}{1+|x-y|} \le \frac{|x-z|}{1+|x-z|}+\frac{|z-y|}{1+|z-y|}.$$
Trying a few values, I'm guessing triangle inequality holds.