Let $T$ be a linear operator on a finite-dimensional space $V$. Let $\mathcal{B}=\{\alpha_1, \dots, \alpha_n \}$ and $\mathcal{B'} = \{\alpha'_1, \dots, \alpha'_n\}$ be two basis for $V$.
How are $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{B'}}$ related?
First, there exists a unique invertible $n \times n$ matrix $P$ such that $$[\alpha]_{\mathcal{B}}=P [\alpha]_{\mathcal{B'}}$$
What exactly is $P$?
I would appreciate a concrete example of this statement.
Note, that $[\alpha]_{\mathcal{B}}$ denotes the coordinates of the vector $\alpha$ with respect to the basis $\mathcal{B}$.