I am looking to convert a data frame as below
Original dataset
| Group | Miles |
|---|---|
| A | 23 |
| A | 20 |
| A | 24 |
| A | 25 |
| B | 12 |
| B | 17 |
| B | 16 |
| B | 19 |
I want to convert from above format to this :
| Col_A | Col_B |
|---|---|
| 23 | 12 |
| 20 | 17 |
| 24 | 16 |
| 25 | 19 |
I am looking to convert a data frame as below
Original dataset
| Group | Miles |
|---|---|
| A | 23 |
| A | 20 |
| A | 24 |
| A | 25 |
| B | 12 |
| B | 17 |
| B | 16 |
| B | 19 |
I want to convert from above format to this :
| Col_A | Col_B |
|---|---|
| 23 | 12 |
| 20 | 17 |
| 24 | 16 |
| 25 | 19 |
pivot:df = df.assign(t= df.groupby('Group').cumcount()).pivot(index = 't', columns ='Group', values = 'Miles').add_prefix('Col_').rename_axis(columns = None).reset_index(drop = True)
pd.concat:k = pd.concat([g.reset_index(drop=True)['Miles'] for _,g in df.groupby('Group')], 1)
k.columns = ['colA', 'colB']
set_index/unstack:k = df.set_index(['Group', df.groupby('Group').cumcount()]).unstack(0).add_prefix('Col_').rename_axis(columns= [None,None])
k.columns = k.columns.droplevel()
groupby / explode:k = df.groupby('Group').agg(list).T.apply(pd.Series.explode).add_prefix('Col_')
k = k.reset_index(drop=True).rename_axis(columns = None)
Col_A Col_B
0 23 12
1 20 17
2 24 16
3 25 19
A pivot_table option:
df = (
df.pivot_table(index=df.groupby('Group').cumcount(),
columns='Group',
values='Miles')
.add_prefix('Col_')
.rename_axis(columns=None)
)
df:
Col_A Col_B
0 23 12
1 20 17
2 24 16
3 25 19
Explaination:
Create a new index based on the relative position in each group with groupby cumcount:
df.groupby('Group').cumcount()
Group new_index
A 0
A 1
A 2
A 3
B 0
B 1
B 2
B 3
Then Group can become the new columns in the wide format Frame.
df.pivot_table(index=df.groupby('Group').cumcount(),
columns='Group',
values='Miles')
Group A B
0 23 12
1 20 17
2 24 16
3 25 19
Then some cleanup with add_prefix + rename_axis:
df.pivot_table(index=df.groupby('Group').cumcount(),
columns='Group',
values='Miles')
.add_prefix('Col_')
.rename_axis(columns=None)
Col_A Col_B
0 23 12
1 20 17
2 24 16
3 25 19