The chisq.test(...) function is designed primarily for use with counts, so it expects its arguments to be either countable (using table(...) for example), or to be counts already. It basically creates a contingency table for x and y (the first two arguments) and then uses the chisq test to determine if they are from the same distribution.
You are probably better off using the Kolmogorov–Smirnov test, which is designed for problems like yours. The K-S test compares the ecdf of the sample to the cdf of the test distribution and tests the null hypothesis that they are the same.
set.seed(1)
df <- data.frame(y = rexp(1000),
z = rcauchy(1000, 100, 100))
ks.test(df$y,"pexp")
# One-sample Kolmogorov-Smirnov test
#
# data: df$y
# D = 0.0387, p-value = 0.1001
# alternative hypothesis: two-sided
ks.test(df$z,"pcauchy",100,100)
# One-sample Kolmogorov-Smirnov test
#
# data: df$z
# D = 0.0296, p-value = 0.3455
# alternative hypothesis: two-sided
Note that in this case, the K-S test predicts a 90% chance that your sample df$y did not come from an exponential distribution, even though it clearly did.
You can use chisq.test(...) by artificially binning your data and then comparing the counts in each bin to what would be expected from your test distribution (using p=...), but this is convoluted and the answer you get depends on the number of bins.
breaks <- c(seq(0,10,by=1))
O <- table(cut(df$y,breaks=breaks))
p <- diff(pexp(breaks))
chisq.test(O,p=p, rescale.p=T)
# Chi-squared test for given probabilities
#
# data: O
# X-squared = 7.9911, df = 9, p-value = 0.535
In this case the chisq test predicts a 47% chance that your sample did not come from an exponential distribution.
Finally, even though they are qualitative, I find Q-Q plots to be very useful. These plot quantiles of your sample against quantiles of the test distribution. If the sample is drawn from the test distribution, the Q-Q plot should fall close to the line y=x.
par(mfrow=c(1,2))
plot(qexp(seq(0,1,0.01)),quantile(df$y,seq(0,1,0.01)),
main="Q-Q Plot",ylab="df$Y", xlab="Exponential",
xlim=c(0,5),ylim=c(0,5))
plot(qcauchy(seq(0,.99,0.01),100,100),quantile(df$z,seq(0,.99,0.01)),
main="Q-Q Plot",ylab="df$Z",xlab="Cauchy",
xlim=c(-1000,1000),ylim=c(-1000,1000))

Looking at the Q-Q plots gives me much more confidence in asserting that df$y and df$z are drawn, respectively, from the Exponential and Cauchy distributions than either the K-S or ChiSq tests, even though I can't put a number on it.