In https://arxiv.org/abs/2506.15147 , high-period constant-depth Cliffords are used to catalyze Z rotations. For an $n$ qubit state, the paper uses a Clifford with period $2^n-1$ built entirely out of CNOT gates.
Ignoring the constant depth requirement, is it possible to achieve much higher periods? The state space of an $n$ qubit stabilizer state isn't described by $n$ bits, it's described by $O(n^2)$ bits, so it seems conceivable that periods like $2^{(n^2)}$ could be achievable.
Note I don't consider global phase to be part of the period. If $C^3 = iC$, that's a period 3 operation.
I brute force searched solutions for n=1,2.
For $n=1$ the maximum period is 4 (e.g. the S gate).
For $n=2$, the maximum period is 12. Interestingly this can be achieved without any two qubit gates, by combining single qubit gates with periods of 3 and 4:
I sampled 100k random tableaus for $n=3,4,5,6$ and got:
for $n=3$ a period 24:
stim.Tableau.from_conjugated_generators(
xs=[
stim.PauliString("-XZX"),
stim.PauliString("-X_X"),
stim.PauliString("+YZZ"),
],
zs=[
stim.PauliString("-_YX"),
stim.PauliString("+ZY_"),
stim.PauliString("+YZY"),
],
)
q0: -X-@-X-@-X-X---------------
| | | | | |
q1: -@-X-@-|-@-|-H-S-X---------
| | |
q2: -----S-X-H-@-----@-S-H-S-S-
for $n=4$ a period 60:
stim.Tableau.from_conjugated_generators(
xs=[
stim.PauliString("-_ZYZ"),
stim.PauliString("-ZYYY"),
stim.PauliString("+ZXZ_"),
stim.PauliString("-YYZ_"),
],
zs=[
stim.PauliString("+YYZY"),
stim.PauliString("-_ZY_"),
stim.PauliString("-XYX_"),
stim.PauliString("+Y_YZ"),
],
)
q0: -X-@-X-H-@-@-@---X-X-------------------------------------------S-S-----
| | | | | | | |
q1: -|-|-|-H-X-|-|---|-|-X-@-X-S-H-S-@-@-----------------------------------
| | | | | | | | | | | |
q2: -@-X-@-----X-|-H-@-|-|-|-|-----S-X-|-X-@-X-H-@---X-----H-S-S-H---S-S---
| | | | | | | | | | |
q3: -------S-----X-H---@-@-X-@-----S---X-@-X-@-S-X-H-@-S-H-S-H-S-S-H---S-S-
and for $n=5$ a period 120:
stim.Tableau.from_conjugated_generators(
xs=[
stim.PauliString("-_XZ_Y"),
stim.PauliString("-ZY_YZ"),
stim.PauliString("+XZZYZ"),
stim.PauliString("-ZZ__X"),
stim.PauliString("-XZZ_Z"),
],
zs=[
stim.PauliString("+XXX__"),
stim.PauliString("+Y_Y_Z"),
stim.PauliString("-Y_YXZ"),
stim.PauliString("-YYX_Y"),
stim.PauliString("+_ZYX_"),
],
)
q0: -X-@-X-H-S-@-@---X-X-X-X-----------------------------------------------------S-S-------
| | | | | | | | |
q1: -@-X-@-----|-|-H-@-|-|-|-X-@-X-S-H-@-----X-X-----------------------H-S-S---H---S-S-----
| | | | | | | | | | |
q2: -----------X-|-S-H-@-|-|-@-X-@-----|-S-H-@-|-H-S-X-X---------------H---S-S-H-----S-S---
| | | | | | |
q3: ---------S---X-S-H---@-|-----------|---H---@---H-@-|-X-@-X-H-S-@---X-H---S-S-H-----S-S-
| | | | | | | |
q4: -----------------------@---------S-X-----------S-H-@-@-X-@---S-X-H-@-------------------
for $n=6$ the largest sampled period was 204:
stim.Tableau.from_conjugated_generators(
xs=[
stim.PauliString("+XZYZZY"),
stim.PauliString("-_YYXZY"),
stim.PauliString("+ZXZZ_X"),
stim.PauliString("+YZY_ZZ"),
stim.PauliString("-Y_ZZZY"),
stim.PauliString("-YZY__Z"),
],
zs=[
stim.PauliString("+YXY_ZX"),
stim.PauliString("+___Z__"),
stim.PauliString("+_YZZ__"),
stim.PauliString("+YY__XX"),
stim.PauliString("+X____Y"),
stim.PauliString("+ZZX_XX"),
],
)
q0: -S-H-S-@-@-@-@---X-X-X-----------------------------------------------------------H-S-S-H-S-S-----
| | | | | | |
q1: -------|-|-|-|---|-|-|-X-@-X-S-@-@---X-X-X-X-----------------------------------------------S-S---
| | | | | | | | | | | | | | | |
q2: -----H-X-|-|-|---|-|-|-@-X-@-H-X-|-H-@-|-|-|-X-@-X---@---X-X---------------------H---S-S-H---S-S-
| | | | | | | | | | | | | | | |
q3: -----S---X-|-|-H-@-|-|-----------|-H---@-|-|-|-|-|-H-X-H-@-|-X-@-X-@-----------------------------
| | | | | | | | | | | | | | |
q4: -----H-----X-|-S-H-@-|-------S---X-H-----@-|-|-|-|---------|-|-|-|-|-X-@-X-H-@-------------------
| | | | | | | | | | | | | | |
q5: -----S-------X-------@-------------H-------@-@-X-@---------@-@-X-@-X-@-X-@-H-X-S-H---------------
...which to my eye doesn't look like $2^{\Theta(n^2)}$ growth. Is there a proof it's not?

