Considering a 3 qubit system, what does the matrix operation will look like if I apply CNOT on qubit 1 and qubit 2 and then apply CNOT on qubit 1 and qubit 3?
1 Answers
By taking into account this representation of the CNOT gate:
$$CNOT = | 0 \rangle \langle 0 | \otimes I + | 1 \rangle \langle 1 | \otimes X$$
We can write:
$$CNOT(1, 3) = | 0 \rangle \langle 0 | \otimes I \otimes I + | 1 \rangle \langle 1 | \otimes I \otimes X$$
$$CNOT(1, 2) = | 0 \rangle \langle 0 | \otimes I \otimes I + | 1 \rangle \langle 1 | \otimes X \otimes I$$
That's why:
\begin{align*} &CNOT(1, 3) CNOT(1, 2) = | 0 \rangle \langle 0 | \otimes I \otimes I + | 1 \rangle \langle 1 | \otimes X \otimes X = \\ &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \end{align*}
$$= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{pmatrix}$$
- 4,481
- 1
- 11
- 23