I have the following question. I was asked to compute the following limit: Let $A_1 ... A_k$ be positive numbers, does exist:
$$ \lim_{n \rightarrow \infty} (A_1^n + ... A_k^n)^{1/n} $$ My work: W.L.O.G let $A_1= \max{ A_1, ..., A_k}$, so I have $$ A_1^n \leq A_1^n + ... A_k^n \leq kA_1^n $$ so that
$$ A_1 = \lim_{n \rightarrow \infty} (A_1^n)^{1/n} \leq \lim_{n \rightarrow \infty}(A_1^n + ... A_k^n)^{1/n} \leq \lim_{n \rightarrow \infty} (kA_1^n)^{1/n} = kA_1 $$
Can I do something else to sandwich the limit?