I'm reading about Euler exact sequence in Ravi Vakil's notes, and I need help to check a few things. Given a scheme $X$, and a locally free sheaf $\mathcal{E}$ of rank $n+1$ on $X$, let us start from here https://mathoverflow.net/questions/116526/generalized-euler-sequence-on-a-projective-scheme
and say that we have an exact sequence $$ 0\to \Omega_{\mathbb{P}\mathcal{E}/X}\to \pi^*(\mathcal{E}^\vee)(-1)\to\mathcal{O}_{\mathbb{P}\mathcal{E}}\to 0\quad (I) $$ or dually $$ 0\to \mathcal{O}_{\mathbb{P}\mathcal{E}}\to \pi^*\mathcal{E}\otimes O_{\mathbb{P}\mathcal{E}}(1)\to \mathcal{T}_{\mathbb{P}\mathcal{E}/X}\to 0\quad (II) $$ where $\mathbb{P}{\mathcal{E}}=\mathrm{Proj}({\mathrm{Sym}(\mathcal{E^\vee})})$ with $\pi:\mathbb{P}\mathcal{E}\to X$. In the notes (chapter 13), he writes $$ 0\to \Omega_{\mathbb{P}\mathcal{E}/X}\to \mathcal{E}^\vee\otimes O(-1)\to\mathcal{O}_{X}\to 0\quad (III) $$ I think $(III)$ is the pushforward of $(I)$, but I am not sure why. I can see that $\pi_*\mathcal{O}_{\mathbb{P}{\mathcal{E}}}$ has no higher direct images, so (II) becomes $$ 0\to \mathcal{O}_{X}\to \pi_*\pi^*\mathcal{E}\otimes O_{X}(1)\to \pi_*\mathcal{T}_{\mathbb{P}\mathcal{E}/X}\to 0\quad (IV) $$ or $$ 0\to \mathcal{O}_{X}\to \mathcal{E}\otimes \mathcal{E}^\vee\to \pi_*\mathcal{T}_{\mathbb{P}\mathcal{E}/X}\to 0\quad (V) $$ by projection formula. But I do not see why $\pi_*\pi^*\mathcal{E}=\mathcal{E}$. My question is:
Why is $\pi_*\pi^*\mathcal{E}=\mathcal{E}$ true? if possible, please say something general. say you have a map $f:X\to Y$ so that $f_*O_X=O_Y$ and a sheaf $\mathcal{E}$ on $X$. what conditions on $\mathcal{E}$ do you need for $f_*f^*\mathcal{E}=\mathcal{E}$ to hold?
[Edit: Ok, my question really did not make sense. By $O(-1)$ he means $\pi_* \mathcal{O}_{\mathbb{P}\mathcal{E}}(-1)$, and not $O_X(-1)$ even when $O_X(-1)$ makes sense. so we do not need to have $\pi_*\pi^*\mathcal{E}=\mathcal{E}$].