It will be very helpful to start form the definition of implies to (in other words how we define $P \implies Q$). This will be helpful to understand vacuously true statements. Then it will be easy to undersand how Axiom of Extenstionality $\implies$ uniqueness of null set.
Definition($P \implies Q$):
$ P \implies Q := \neg(P \wedge \neg Q) = \neg P \vee Q\,$, in other words $P$ and not $\neg Q$ are not simultaneously true. This is our besic intuition of what 'implies to' mean.
Now, If $P$ is false, then regardless of whether $Q$ is true or not $P \implies Q\,$ is always true from the definition above. This statements are called vacuously true statements.
Now, let $\varnothing,\,\varnothing'\,$ be two null sets. We can say
$x \in \varnothing$ and $x \in \varnothing'$ is false $\forall x$
\begin{align}
&\implies \forall x(x\in \varnothing \implies x \in \varnothing')\, \big[ \text{vacuously true}\big]\\
& \text{and,}\quad \forall x(x\in \varnothing \implies x \in \varnothing') \big[ \text{also vacuously true}\big]\\
&\implies \forall x(x \in \varnothing \iff x \in \varnothing')
\end{align}
Axiom of Extentionality: $ \forall A \forall B\: \forall x((x \in A \iff x \in B) \implies (A = B))$
Since, $\forall x(x \in \varnothing \iff x \in \varnothing')\quad \therefore \varnothing = \varnothing'$.