I want to prove that if $0\le p_n<1$ and $\sum p_n<\infty$, then $\prod\left(1-p_n\right)>0$ .
There is a hint : first consider the case $\sum p_n<1$, and then show that $\prod\left(1-p_n\right)\ge1-\sum p_n$ .
How can I use this hint to show the statement above?