Here's another approach for $\displaystyle{\psi\left(\frac{1}{3}\right)}$. The conventional harmonic number is:
$$
H_n=\sum\limits_{k=1}^n\frac{1}{k}
$$
In this case we must have $n\in\mathbb{N}$. Now define generalized harmonic number such that:
$$
\mathbf{H}_n=\sum\limits_{k=1}^\infty \left(\frac{1}{k}-\frac{1}{k+n}\right)
$$
where $n\in\mathbb{R}$. Clearly when $n\in\mathbb{N}$, the values match, so $\lim\limits_{n\rightarrow\infty}\mathbf{H}_n=\gamma+\lim\limits_{n\rightarrow\infty}\ln{n}$. From the definition we can write:
\begin{alignat}{2}
\mathbf{H}_{mn}-\mathbf{H}_n &=\sum\limits_{k=1}^\infty\left(\frac{1}{k}-\frac{1}{k+mn}\right)-\mathbf{H}_n \\
&= \sum\limits_{k=1}^\infty\sum\limits_{j=0}^{m-1}\left(\frac{1}{km-j}-\frac{1}{km-j+mn}\right)-\mathbf{H}_n & ~~~~~~\color{blue}{(k\rightarrow km-j)}\\
&=\frac{1}{m}\sum\limits_{k=1}^\infty\sum\limits_{j=0}^{m-1}\left(\frac{1}{k-j/m}-\frac{1}{k-j/m+n}\right)-\mathbf{H}_n\\
&=\frac{1}{m}\sum\limits_{j=0}^{m-1}\sum\limits_{k=1}^\infty\left[\left(\frac{1}{k}-\frac{1}{k-j/m+n}\right)-\left(\frac{1}{k}-\frac{1}{k-j/m}\right)\right]-\mathbf{H}_n\\
&=\frac{1}{m}\sum\limits_{j=0}^{m-1} (\mathbf{H}_{n-j/m}-\mathbf{H}_{-j/m})-\mathbf{H}_{n}\\
&= \frac{1}{m}\sum\limits_{j=0}^{m-1} (\mathbf{H}_{n-j/m}-\mathbf{H}_{-j/m}-\mathbf{H}_{n})
\end{alignat}
Let $n\rightarrow \infty$, then
$$
\lim\limits_{n\rightarrow\infty}\mathbf{H}_{mn}-\mathbf{H}_n=\ln{m}
$$
$$
\lim\limits_{n\rightarrow\infty}\frac{1}{m}\sum\limits_{j=0}^{m-1} (\mathbf{H}_{n-j/m}-\mathbf{H}_{-j/m}-\mathbf{H}_{n})=-\frac{1}{m}\sum\limits_{j=0}^{m-1} \mathbf{H}_{-j/m}
$$
Plus, obviously $\mathbf{H}_0=0$, we can conclude:
\begin{equation}
\sum\limits_{j=1}^{m-1} \mathbf{H}_{-j/m}=-m\ln{m}
\tag{*}
\end{equation}
Recall
$$
\pi\cot(\pi n)=\sum\limits_{k= -\infty}^\infty \frac{1}{n+k}
$$
Rewrite this as:
\begin{alignat}{2}
\pi\cot(\pi n) &=\sum\limits_{k=1}^\infty \left(\frac{1}{k+n-1}-\frac{1}{k-n}\right)\\
&= \sum\limits_{k=1}^\infty \left[\left(\frac{1}{k}-\frac{1}{k-n}\right)-\left(\frac{1}{k}-\frac{1}{k+n-1}\right)\right]\\
&= \mathbf{H}_{-n}-\mathbf{H}_{n-1}
\end{alignat}
Hence, with $n=j/m$,
\begin{equation}
\mathbf{H}_{-j/m}-\mathbf{H}_{-(m-j)/m}=\pi\cot\left(\frac{\pi j}{m}\right)
\tag{**}
\end{equation}
Particularly for $m=3$, $(*)$ becomes
\begin{equation}
\mathbf{H}_{-1/3}+ \mathbf{H}_{-2/3}=-3\ln{3}
\tag{1}
\end{equation}
For $m=3$ and $j=1$, $(**)$ becomes
\begin{equation}
\mathbf{H}_{-1/3}- \mathbf{H}_{-2/3}=\pi\cot\left(\frac{\pi }{3}\right)=\frac{\pi}{\sqrt{3}}
\tag{2}
\end{equation}
Recall the series definition for the digamma function:
$$
\psi(z)=-\gamma-\frac{1}{z}+\sum\limits_{k= 1}^\infty \left(\frac{1}{k}-\frac{1}{k+z}\right)=-\gamma-\frac{1}{z}+\mathbf{H}_z
$$
Thus, solve $(1)$ and $(2)$ simultaneously,
$$
\psi\left(-\frac{2}{3}\right)=-\gamma+\frac{3}{2}-\frac{3}{2}\ln{3}-\frac{\pi}{2\sqrt{3}}
$$
At the end, use the recurrence relationship:
$$
\psi(z+1)=\psi(z)+\frac{1}{z}
$$
the required value can be found:
$$
\psi\left(\frac{1}{3}\right)=-\gamma-\frac{3}{2}\ln{3}-\frac{\pi}{2\sqrt{3}}
$$
The result you provided, as well as Nash's, was wrong as you both missed a minus sign, but just to clarify, Nash's working was commendable, only the last line is wrong.