Find a closed form for $\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^{2^2}}+\frac{1}{2^{2^{2^2}}}+\cdots $
Since I've never encountered this type of series before I was hoping someone here could help me start. Thanks!
EDIT: I've edited some stuff in light of the comments. I have also found an interesting manipulation, but I don't think it leads anywhere seeing the comments. Here it is:
Let $S$ be the series. Define $f(x)=\underbrace{2^{2^{2^{\cdots}}}}_{k\ 2's}+\underbrace{2^{2^{2^{\cdots}}}}_{k+1\ 2's}$, e.g. $f(2)=2^2+2^{2^2}$. Then adding pairs of terms we can write $S$ as:
$S=\frac{f(1)}{2^{f(0)+1}}+\frac{f(2)}{2^{f(1)+1}}+\frac{f(3)}{2^{f(2)+1}}\cdots$
$=\frac{f(1) 2^{f(1)-1}}{2^{f(0)+f(1)}}+\frac{f(2) 2^{f(2)-1}}{2^{f(1)+f(2)}}+\frac{f(3) 2^{f(3)-1}}{2^{f(2)+f(3)}}+\cdots $
And then you can use $x 2^{x-1}+\sum_{k=1}^x k\binom{x}{k}$?