does anyone know the following result? If it holds in this form and any source which presents it? Thanks a lot.
Consider metric space $(X,d_{X})$. Let $f:A \subset (X,d_{X}) \rightarrow \mathbb{R}$ be a Lipschitz continuous function i.e. $\exists K > 0$ such that \begin{align*} |f(x)-f(y)| \leq Kd_{X}(x,y) ~~~~\forall x,y \in A \end{align*} then define functions
$$\bar{f_{1}}(x) := \sup\lbrace f(y) - Kd_{X}(x,y): y\in A \rbrace ~~ \forall x \in X$$ and $$\bar{f_{2}}(x) := \inf\lbrace f(y) + Kd_{X}(x,y): y\in A \rbrace ~~ \forall x \in X$$ it follows that \begin{align*} \bar{f_{1}}, \bar{f_{2}}: X \rightarrow \mathbb{R} \end{align*} are Lipschitz continuous with \begin{align*} |\bar{f_{i}}(x)-\bar{f_{i}}(z)| \leq Kd_{X}(x,z) ~~~\forall x,z \in X \text{ and } \forall i = 1,2 \end{align*} and \begin{align*} \bar{f_{i}}(x) = f(x) ~~~ \forall x \in A \text{ and } \forall i =1,2 \end{align*}